APR Nov/Dec 2022 - 66

»
SPECTROSCOPY
»
Detecting Trace Elements
in Single Cells with ICP-MS
Simon Nelms
ICP-MS Product Marketing Manager
Thermo Fisher Scientific
Trace elements are crucial to many biological processes. From the
wound-healing effects of zinc to the enzymatic control of iron and
copper, and the potential anti-cancer benefits of selenium, trace
elements are critical to physiological and biochemical processes in
plants and animals.
To fully understand trace element uptake and processing, intracellular
levels of trace elements must be determined. By detecting both the
distribution and mass concentration of trace elements within cell
populations, scientists can gain greater insight into cellular function
and heterogeneity within populations. This knowledge can help:
*
Improve understanding in clinical research, through the
detection of metal toxins.
* Drive better drug efficacy, by detecting metallodrug uptake.
* Define optimal cell culture conditions for bio-production
research, by analyzing consistency markers within cultures.
Although biomarker analysis is routinely used in clinical research,
diagnosis and treatment, trace metal analysis has lagged. This is largely
because traditional methods, which rely on cell digestion, assume
homogeneous distribution of analytes through the cell cohort. This is
not the case with trace elements and these methods do not give the
detail needed to discern the nuances of intracellular distribution.
However, recent advances in inductively coupled plasma-mass
spectrometry (ICP-MS) are changing this landscape. These powerful,
element-selective detection systems now provide the capacity and
capability for trace element analysis at the single-cell level. This
paper shows how scientists can use the latest ICP-MS technology
and software to accurately determine the amount of trace selenium
in individual cells using certified reference samples of selenized yeast.
66 |
| November/December 2022

APR Nov/Dec 2022

Table of Contents for the Digital Edition of APR Nov/Dec 2022

APR Nov/Dec 2022 - Cover1
APR Nov/Dec 2022 - Cover2
APR Nov/Dec 2022 - 1
APR Nov/Dec 2022 - 2
APR Nov/Dec 2022 - 3
APR Nov/Dec 2022 - 4
APR Nov/Dec 2022 - 5
APR Nov/Dec 2022 - 6
APR Nov/Dec 2022 - 7
APR Nov/Dec 2022 - 8
APR Nov/Dec 2022 - 9
APR Nov/Dec 2022 - 10
APR Nov/Dec 2022 - 11
APR Nov/Dec 2022 - 12
APR Nov/Dec 2022 - 13
APR Nov/Dec 2022 - 14
APR Nov/Dec 2022 - 15
APR Nov/Dec 2022 - 16
APR Nov/Dec 2022 - 17
APR Nov/Dec 2022 - 18
APR Nov/Dec 2022 - 19
APR Nov/Dec 2022 - 20
APR Nov/Dec 2022 - 21
APR Nov/Dec 2022 - 22
APR Nov/Dec 2022 - 23
APR Nov/Dec 2022 - 24
APR Nov/Dec 2022 - 25
APR Nov/Dec 2022 - 26
APR Nov/Dec 2022 - 27
APR Nov/Dec 2022 - 28
APR Nov/Dec 2022 - 29
APR Nov/Dec 2022 - 30
APR Nov/Dec 2022 - 31
APR Nov/Dec 2022 - 32
APR Nov/Dec 2022 - 33
APR Nov/Dec 2022 - 34
APR Nov/Dec 2022 - 35
APR Nov/Dec 2022 - 36
APR Nov/Dec 2022 - 37
APR Nov/Dec 2022 - 38
APR Nov/Dec 2022 - 39
APR Nov/Dec 2022 - 40
APR Nov/Dec 2022 - 41
APR Nov/Dec 2022 - 42
APR Nov/Dec 2022 - 43
APR Nov/Dec 2022 - 44
APR Nov/Dec 2022 - 45
APR Nov/Dec 2022 - 46
APR Nov/Dec 2022 - 47
APR Nov/Dec 2022 - 48
APR Nov/Dec 2022 - 49
APR Nov/Dec 2022 - 50
APR Nov/Dec 2022 - 51
APR Nov/Dec 2022 - 52
APR Nov/Dec 2022 - 53
APR Nov/Dec 2022 - 54
APR Nov/Dec 2022 - 55
APR Nov/Dec 2022 - 56
APR Nov/Dec 2022 - 57
APR Nov/Dec 2022 - 58
APR Nov/Dec 2022 - 59
APR Nov/Dec 2022 - 60
APR Nov/Dec 2022 - 61
APR Nov/Dec 2022 - 62
APR Nov/Dec 2022 - 63
APR Nov/Dec 2022 - 64
APR Nov/Dec 2022 - 65
APR Nov/Dec 2022 - 66
APR Nov/Dec 2022 - 67
APR Nov/Dec 2022 - 68
APR Nov/Dec 2022 - 69
APR Nov/Dec 2022 - 70
APR Nov/Dec 2022 - 71
APR Nov/Dec 2022 - 72
APR Nov/Dec 2022 - 73
APR Nov/Dec 2022 - 74
APR Nov/Dec 2022 - 75
APR Nov/Dec 2022 - 76
APR Nov/Dec 2022 - 77
APR Nov/Dec 2022 - 78
APR Nov/Dec 2022 - 79
APR Nov/Dec 2022 - 80
APR Nov/Dec 2022 - 81
APR Nov/Dec 2022 - 82
APR Nov/Dec 2022 - 83
APR Nov/Dec 2022 - 84
APR Nov/Dec 2022 - Cover3
APR Nov/Dec 2022 - Cover4
https://www.nxtbookmedia.com