IEEE - Aerospace and Electronic Systems - April 2023 - 3
In This Issue -Technically
LASER INTERSATELLITE LINK RANGE IN FREE-SPACE OPTICAL SATELLITE NETWORKS:
IMPACT ON LATENCY
Laser communication terminals for establishing laser intersatellite links (LISLs) are in high
demand by companies, such as SpaceX and Telesat, who want to equip their satellites with LISLs
to realize free-space optical satellite networks (FSOSNs). Such terminals offer LISLs with ranges
spanning from 4500 to 45,000 km. How does LISL range affect network latency in FSOSNs? To
investigate this effect, we employ the satellite constellation for Phase I of SpaceX's Starlink and
examine six different LISL ranges for satellites in this constellation in three different scenarios for
long-distance intercontinental data communications. We observe that the satellite connectivity,
and thereby the network connectivity, improves with an increase in the LISL range as more and
farther satellites become available within the LISL range of a satellite. A higher LISL range leads
to better shortest paths offering lower average network latency. Furthermore, improvement in
average network latency with increase in LISL range is seen in all scenarios.
LPI WAVEFORM RECOGNITION USING ADAPTIVE FEATURE CONSTRUCTION AND
CONVOLUTIONAL NEURAL NETWORKS
Low probability of intercept (LPI) radar waveform recognition is one of the crucial functions in
electronic intelligence systems. Advances in artificial intelligence promote the performance of the
LPI waveform recognition with various signal features defined with analytical expressions. However,
noisy LPI waveform recognition is still a challenge for traditional approaches even with
noise elimination techniques, especially for the heavily contaminated noisy LPI signals. Recently,
the adaptive analysis techniques, such as variational mode decomposition (VMD) and empirical
mode decomposition (EMD) provide potential methods that explore the inherent features of signals
and formulate adaptive features for signal recognition. In this article, we propose an adaptive
feature construction framework that utilizes both the adaptive features (via VMD and EMD) and
predefined analytical features (via Wigner-Ville distribution, Choi-William distribution, and
wavelet analysis) to construct the fusion feature, which is further applied on the convolutional neural
networks-based LPI waveform recognition system. The experimental results show that the proposed
feature adaptive LPI network-based exploitation (FALPINE) approach achieves higher
probability of correct classification than state-of-the-art works, which demonstrates the superior
performance of the proposed approach.
NEURAL NETWORK-BASED CONTROLLER FOR TERMINAL GUIDANCE APPLIED
IN SHORT-RANGE ROCKETS
Precision during the guided terminal flight in short-range rockets is a key factor that must be
improved using several methodologies. Traditionally, inertial navigation systems allowed to
unbind the accuracy concerning the range. Unfortunately, in short-range rockets, the response of
the inertial-based controller has to be fast enough to correct the trajectory in a short time. This fact
implies that to achieve high precision, either the use ofsystems too large to be implemented in portable
rockets is required, or systems that are too expensive concerning the total cost of the rocket.
For these systems, artificial intelligence-based guidance tactics could improve the precision, since
once the network is trained, it is not necessary to know the dynamics of the vehicle, and the network
itself can react quickly, simplifying the system and reducing economic costs using relatively
simple electronics. The neural networks are trained using a nonlinear-dynamics model based on a
simulated flight dynamics and verified with real flight data. The simulation results show that the
proposed method works effectively in a six-degree-of-freedom simulation environment, with
excellent accuracy and robustness to parameter uncertainty. The appropriateness of the closedloop
performance is validated using Monte Carlo analysis across a wide range of uncertainty
scenarios.
APRIL 2023
IEEE A&E SYSTEMS MAGAZINE
3
IEEE - Aerospace and Electronic Systems - April 2023
Table of Contents for the Digital Edition of IEEE - Aerospace and Electronic Systems - April 2023
Contents
IEEE - Aerospace and Electronic Systems - April 2023 - Cover1
IEEE - Aerospace and Electronic Systems - April 2023 - Cover2
IEEE - Aerospace and Electronic Systems - April 2023 - Contents
IEEE - Aerospace and Electronic Systems - April 2023 - 2
IEEE - Aerospace and Electronic Systems - April 2023 - 3
IEEE - Aerospace and Electronic Systems - April 2023 - 4
IEEE - Aerospace and Electronic Systems - April 2023 - 5
IEEE - Aerospace and Electronic Systems - April 2023 - 6
IEEE - Aerospace and Electronic Systems - April 2023 - 7
IEEE - Aerospace and Electronic Systems - April 2023 - 8
IEEE - Aerospace and Electronic Systems - April 2023 - 9
IEEE - Aerospace and Electronic Systems - April 2023 - 10
IEEE - Aerospace and Electronic Systems - April 2023 - 11
IEEE - Aerospace and Electronic Systems - April 2023 - 12
IEEE - Aerospace and Electronic Systems - April 2023 - 13
IEEE - Aerospace and Electronic Systems - April 2023 - 14
IEEE - Aerospace and Electronic Systems - April 2023 - 15
IEEE - Aerospace and Electronic Systems - April 2023 - 16
IEEE - Aerospace and Electronic Systems - April 2023 - 17
IEEE - Aerospace and Electronic Systems - April 2023 - 18
IEEE - Aerospace and Electronic Systems - April 2023 - 19
IEEE - Aerospace and Electronic Systems - April 2023 - 20
IEEE - Aerospace and Electronic Systems - April 2023 - 21
IEEE - Aerospace and Electronic Systems - April 2023 - 22
IEEE - Aerospace and Electronic Systems - April 2023 - 23
IEEE - Aerospace and Electronic Systems - April 2023 - 24
IEEE - Aerospace and Electronic Systems - April 2023 - 25
IEEE - Aerospace and Electronic Systems - April 2023 - 26
IEEE - Aerospace and Electronic Systems - April 2023 - 27
IEEE - Aerospace and Electronic Systems - April 2023 - 28
IEEE - Aerospace and Electronic Systems - April 2023 - 29
IEEE - Aerospace and Electronic Systems - April 2023 - 30
IEEE - Aerospace and Electronic Systems - April 2023 - 31
IEEE - Aerospace and Electronic Systems - April 2023 - 32
IEEE - Aerospace and Electronic Systems - April 2023 - 33
IEEE - Aerospace and Electronic Systems - April 2023 - 34
IEEE - Aerospace and Electronic Systems - April 2023 - 35
IEEE - Aerospace and Electronic Systems - April 2023 - 36
IEEE - Aerospace and Electronic Systems - April 2023 - 37
IEEE - Aerospace and Electronic Systems - April 2023 - 38
IEEE - Aerospace and Electronic Systems - April 2023 - 39
IEEE - Aerospace and Electronic Systems - April 2023 - 40
IEEE - Aerospace and Electronic Systems - April 2023 - 41
IEEE - Aerospace and Electronic Systems - April 2023 - 42
IEEE - Aerospace and Electronic Systems - April 2023 - 43
IEEE - Aerospace and Electronic Systems - April 2023 - 44
IEEE - Aerospace and Electronic Systems - April 2023 - Cover3
IEEE - Aerospace and Electronic Systems - April 2023 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2022_tutorial
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2021_tutorials
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2019partII
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2018
https://www.nxtbookmedia.com