IEEE - Aerospace and Electronic Systems - April 2023 - 34
Neural Network-Based Controller for Terminal Guidance Applied in Short-Range Rockets
are placed inside the stability region. Stability is guaranteed
inside rocket flight envelope, for the time and Mach
numbers variation described in Table 1 and Figure 2,
respectively, according to the poles' locations obtained, as
it can be shown in Figure 5, (see [4] for more information).
Following that, ML techniques based on NNs are
used to find the values of the controller output d from the
ndem and the measurements n, c, and _c outside of the linearization
points and to give a self-programming
mechanism.
Figure 4.
Closed-loop feedback scheme.
NEURALNETWORK
d is calculated using NNs outside of the linearization
points. By using the computed values at the linearization
sites as inputs and outputs of a self-learning mechanism,
the goal is to achieve high accuracy in its determination
process.
Both classic and modern GNC applications have
Figure 5.
Location of closed-loop poles and zeros.
!
Yp
!
Yp ¼
DpðM; tÞ¼
¼ CpðM; tÞXp
!
2
4
x
c
c_
2
4
3
5
d1
3
5
þDpðM; tÞ Up
!
CpðM; tÞ¼
c1j ¼ VðMÞ
g
2
4
c11 c12 c13
01 0
00 1
g
b1:
3
5
a1j for j ¼½1; 2; 3
d1 ¼ VðMÞ
(10)
CLOSED-LOOPFEEDBACKSYSTEM
Three poles may be discovered by analyzing the system in
(6). A modern theory-based closed-loop controller is presented,
which is to be used to obtain the inputs and outputs
of the system for the training of a NN-based controller.
Figure 4 shows the scheme of the closed-loop controller,
in which ndem is the desired load factor and n is the measured
load factor.
The values of the controller gain matrix (K) at the linearization
points are determined using robust pole placement
techniques, on where controlled flight system poles
34
already incorporated ML approaches (see [9] and [24]).
The capacity of NN to learn flight dynamics equations is
its primary advantage over alternative approximations.
This feature allows flight prediction without knowing the
physics of the application [9]. As a result, the K determination
procedure can be replicated outside of the preset
operational locations. It should be mentioned that the use
of NNs to solve nonlinear equations is successful, even
when there is uncertainty [9].
To predict the values of canard deflection (d), several
NNs are used. Three distinct techniques have been given
to demonstrate the applicability of the proposed methodology,
which is based on NNs and contemporary control theory,
as shown in Table 3. For each of the techniques, a
hyperparametric study (see [9]), on where the key factor
has been finding a break-even between the time used during
the training process and the correlation between
expected results, avoiding overfitting, has been used to
determine the number, shape of neurons, and the quantity
of training and validation data. Finally, parameters, such
as the maximum number of epochs, the gradient decay
factor, the validation frequency, and the initial learn rate
have been set to 1000, 0.9, 10, and 0.005, respectively,
Table 3.
Input and Target Values For Neural Network
Inputs
ndem
n
Target
c cd_
0.700 0.7668 0.0291 -0.5542 0.0856
1.011 0.906 -0.711 0.006 -0.0724
...
...
IEEE A&E SYSTEMS MAGAZINE
...
...
...
APRIL 2023
IEEE - Aerospace and Electronic Systems - April 2023
Table of Contents for the Digital Edition of IEEE - Aerospace and Electronic Systems - April 2023
Contents
IEEE - Aerospace and Electronic Systems - April 2023 - Cover1
IEEE - Aerospace and Electronic Systems - April 2023 - Cover2
IEEE - Aerospace and Electronic Systems - April 2023 - Contents
IEEE - Aerospace and Electronic Systems - April 2023 - 2
IEEE - Aerospace and Electronic Systems - April 2023 - 3
IEEE - Aerospace and Electronic Systems - April 2023 - 4
IEEE - Aerospace and Electronic Systems - April 2023 - 5
IEEE - Aerospace and Electronic Systems - April 2023 - 6
IEEE - Aerospace and Electronic Systems - April 2023 - 7
IEEE - Aerospace and Electronic Systems - April 2023 - 8
IEEE - Aerospace and Electronic Systems - April 2023 - 9
IEEE - Aerospace and Electronic Systems - April 2023 - 10
IEEE - Aerospace and Electronic Systems - April 2023 - 11
IEEE - Aerospace and Electronic Systems - April 2023 - 12
IEEE - Aerospace and Electronic Systems - April 2023 - 13
IEEE - Aerospace and Electronic Systems - April 2023 - 14
IEEE - Aerospace and Electronic Systems - April 2023 - 15
IEEE - Aerospace and Electronic Systems - April 2023 - 16
IEEE - Aerospace and Electronic Systems - April 2023 - 17
IEEE - Aerospace and Electronic Systems - April 2023 - 18
IEEE - Aerospace and Electronic Systems - April 2023 - 19
IEEE - Aerospace and Electronic Systems - April 2023 - 20
IEEE - Aerospace and Electronic Systems - April 2023 - 21
IEEE - Aerospace and Electronic Systems - April 2023 - 22
IEEE - Aerospace and Electronic Systems - April 2023 - 23
IEEE - Aerospace and Electronic Systems - April 2023 - 24
IEEE - Aerospace and Electronic Systems - April 2023 - 25
IEEE - Aerospace and Electronic Systems - April 2023 - 26
IEEE - Aerospace and Electronic Systems - April 2023 - 27
IEEE - Aerospace and Electronic Systems - April 2023 - 28
IEEE - Aerospace and Electronic Systems - April 2023 - 29
IEEE - Aerospace and Electronic Systems - April 2023 - 30
IEEE - Aerospace and Electronic Systems - April 2023 - 31
IEEE - Aerospace and Electronic Systems - April 2023 - 32
IEEE - Aerospace and Electronic Systems - April 2023 - 33
IEEE - Aerospace and Electronic Systems - April 2023 - 34
IEEE - Aerospace and Electronic Systems - April 2023 - 35
IEEE - Aerospace and Electronic Systems - April 2023 - 36
IEEE - Aerospace and Electronic Systems - April 2023 - 37
IEEE - Aerospace and Electronic Systems - April 2023 - 38
IEEE - Aerospace and Electronic Systems - April 2023 - 39
IEEE - Aerospace and Electronic Systems - April 2023 - 40
IEEE - Aerospace and Electronic Systems - April 2023 - 41
IEEE - Aerospace and Electronic Systems - April 2023 - 42
IEEE - Aerospace and Electronic Systems - April 2023 - 43
IEEE - Aerospace and Electronic Systems - April 2023 - 44
IEEE - Aerospace and Electronic Systems - April 2023 - Cover3
IEEE - Aerospace and Electronic Systems - April 2023 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2022_tutorial
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2021_tutorials
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2019partII
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2018
https://www.nxtbookmedia.com