IEEE - Aerospace and Electronic Systems - August 2022 - 18

Maximization of LEO Nanosatellite's Transmission Capacity to Multiple Ground Stations
calibration and a high number of contacts with all ground
telescopes. For the identified optimal configuration, the
mean visibility time for each station is greater than 238 s,
and at least one passage per day is guaranteed for each
ground telescope. Following a waterfall approach, this
article analyses the requested performance in terms of
manoeuvre velocity and needed torques to achieve the
tracking of the TUT position during the passage of the satellite
above it, which was proved to be more convenient
than always maintaining a nadir-pointing configuration.
The results of the simulations show that the requested
angular rate is 0.75/s, the requested RW momentum storage
is 1 mN ms and the requested torque is 1:6 105 N
m, all these values are compatible with many COTS
ADCS targeted to CubeSat standard. Moreover, the preselected
ADCS system, the CubeADCS, achieves the overall
pointing accuracy of 4 arcmin requested for calibrating
purposes. Taken together, these findings are the following:
1) were consistent with those relative to similar missions;
2) allowed the preliminary design of the ACS to be
implemented in the orbital calibrator;
3) suggests that no additional tip-tilt stages are requested
for calibrator pointing, reducing the overall cost and
mass.
In future work, a more precise model could be implemented
in which, for example, the gravitational field harmonic's
discretization could be limited to higher factors
than J2, and in which the atmospheric drag could be considered.
In addition, different criteria thanfirst-come-firstserved
could be implemented to choose, which TUT to
track during simultaneous contact windows in order to satisfy
mission-specific needs.
ACKNOWLEDGMENTS
This research did not receive any specific grant from funding
agencies in the public, commercial, or not-for-profit
sectors.
REFERENCES
[1] W. J. Larson and J. R. Wertz, " Orbit and constellation
design, " in Space Mission Analysis and Design, 2nd ed.
Torrance, CA, USA: Microcosm, Inc., pp. 157-195, 1995.
[2] J. R. Wertz, " 10 orbit and constellation design-selecting the
right orbit, " in SpaceMission Engineering: TheNew SMAD.
Hawthorne, CA: MicrocosmPress, 2011, pp. 251-254.
[3] M. S. Bottkol and P. B. Didomenico, " A phase-based
approach to the satellite revisit problem, " in Proc.
AAS/AIAA Spaceflight Mechanics Meeting,1991,
pp. 865-884.
18
[4] Y. Ulybyshev, " Geometric analysis and design method
for discontinuous coverage satellite constellations, " J.
Guid., Control, Dyn., vol. 37, no. 2, pp. 549-557, 2014,
doi: 10.2514/1.60756.
[5] Y. Ulybyshev, " General analysis method for discontinuous
coverage satellite constellations, " J. Guid., Control, Dyn.,
vol. 38, no. 12, pp. 2475-2483, 2015, doi: 10.2514/1.
G001254.
[6] Y. N. Razoumny, " Fundamentals of the route theory for
satellite constellation design for earth discontinuous
coverage. Part 1, Analytic emulation of the earth
coverage, " Acta Astronautica, vol. 128, pp. 722-740,
2016, doi: 10.1016/j.actaastro.2016.07.013.
[7] J. G. Walker, " Circular orbit patterns providing continuous
whole earth coverage, " Royal Aircraft Establishment,
Farnborough, U.K., Tech. Rep. 70211, 1970.
[8] G. V. Mozhaev, " The problem of the continuous earth
coverage and the kinematically regular satellite networks.
I, " Cosmic Res., vol. 11, p. 755, 1973.
[9] T. J. Lang, " Symmetric circular orbit satellite constellations
for continuous global coverage, " in Proc. AAS/AIAA
Astrodynamics Conf., pp. 1111-1132, 1988.
[10] P. G. Buzzi, D. Selva, N. Hitomi, and W. J. Blackwell,
" Assessment of constellation designs for earth observation:
Application to the tropics mission, " Acta Astronautica,
vol. 161, pp. 166-182, 2019, doi: 10.1016/j.
actaastro.2019.05.007.
[11] T. Qin, M. Macdonald, and D. Qiao, " Fully decentralized
cooperative navigation for spacecraft constellations, "
IEEE Trans. Aerosp. Electron. Syst., vol. 57, no. 4,
pp. 2383-2394, Aug. 2021.
[12] M. Guan, T. Xu, F. Gao, W. Nie, and H. Yang, " Optimal
walker constellation design of LEO-based global navigation
and augmentation system, " Remote Sens., vol. 12,
no. 11, 2020, Art. no. 1845, doi: 10.3390/rs12111845.
[13] C. Zhang, J. Jin, L. Kuang, and J. Yan, " Leo constellation
design methodology for observing multi-targets, " Astrodynamics,
vol. 2, no. 2, pp. 121-131, 2018, doi: 10.1007/
s42064-017-0015-4.
[14] J. Ma, Y. Meng, X. Zhu, S. HE, and Y. GAO, " Optimal
design of low-earth-orbit satellite constellation for regional
fast revisit, " Scientia Sinica Technologica, vol. 48, no. 2,
pp. 170-184, 2017, doi: 10.1360/N092017-00026.
[15] Z. Song, H. Liu, G. Dai, M. Wang, and X. Chen, " Cell
area-based method for analyzing the coverage capacity of
satellite constellations, " Int. J. Aerosp. Eng., vol. 2021,
2021, Art. no. 6679107, doi: 10.1155/2021/6679107.
[16] F. Ma et al., " Hybrid constellation design using a genetic
algorithm for a leo-based navigation augmentation system, "
GPS Solutions, vol. 24, no. 2, pp. 1-14, 2020,
doi: 10.1007/s10291-020-00977-0.
[17] C. Dai, G. Zheng, and Q. Chen, " Satellite constellation
design with multi-objective genetic algorithm for regional
terrestrial satellite network, " China Commun., vol. 15,
no. 8, pp. 1-10, 2018, doi: 10.1109/CC.2018.8438269.
IEEE A&E SYSTEMS MAGAZINE
AUGUST 2022
http://dx.doi.org/10.2514/1.60756 http://dx.doi.org/10.2514/1.G001254 http://dx.doi.org/10.2514/1.G001254 http://dx.doi.org/10.1016/j.actaastro.2016.07.013 http://dx.doi.org/10.1016/j.actaastro.2019.05.007 http://dx.doi.org/10.1016/j.actaastro.2019.05.007 http://dx.doi.org/10.3390/rs12111845 http://dx.doi.org/10.1007/s42064-017-0015-4 http://dx.doi.org/10.1007/s42064-017-0015-4 http://dx.doi.org/10.1360/N092017-00026 http://dx.doi.org/10.1155/2021/6679107 http://dx.doi.org/10.1007/s10291-020-00977-0 http://dx.doi.org/10.1109/CC.2018.8438269

IEEE - Aerospace and Electronic Systems - August 2022

Table of Contents for the Digital Edition of IEEE - Aerospace and Electronic Systems - August 2022

Contents
IEEE - Aerospace and Electronic Systems - August 2022 - Cover1
IEEE - Aerospace and Electronic Systems - August 2022 - Cover2
IEEE - Aerospace and Electronic Systems - August 2022 - Contents
IEEE - Aerospace and Electronic Systems - August 2022 - 2
IEEE - Aerospace and Electronic Systems - August 2022 - 3
IEEE - Aerospace and Electronic Systems - August 2022 - 4
IEEE - Aerospace and Electronic Systems - August 2022 - 5
IEEE - Aerospace and Electronic Systems - August 2022 - 6
IEEE - Aerospace and Electronic Systems - August 2022 - 7
IEEE - Aerospace and Electronic Systems - August 2022 - 8
IEEE - Aerospace and Electronic Systems - August 2022 - 9
IEEE - Aerospace and Electronic Systems - August 2022 - 10
IEEE - Aerospace and Electronic Systems - August 2022 - 11
IEEE - Aerospace and Electronic Systems - August 2022 - 12
IEEE - Aerospace and Electronic Systems - August 2022 - 13
IEEE - Aerospace and Electronic Systems - August 2022 - 14
IEEE - Aerospace and Electronic Systems - August 2022 - 15
IEEE - Aerospace and Electronic Systems - August 2022 - 16
IEEE - Aerospace and Electronic Systems - August 2022 - 17
IEEE - Aerospace and Electronic Systems - August 2022 - 18
IEEE - Aerospace and Electronic Systems - August 2022 - 19
IEEE - Aerospace and Electronic Systems - August 2022 - 20
IEEE - Aerospace and Electronic Systems - August 2022 - 21
IEEE - Aerospace and Electronic Systems - August 2022 - 22
IEEE - Aerospace and Electronic Systems - August 2022 - 23
IEEE - Aerospace and Electronic Systems - August 2022 - 24
IEEE - Aerospace and Electronic Systems - August 2022 - 25
IEEE - Aerospace and Electronic Systems - August 2022 - 26
IEEE - Aerospace and Electronic Systems - August 2022 - 27
IEEE - Aerospace and Electronic Systems - August 2022 - 28
IEEE - Aerospace and Electronic Systems - August 2022 - 29
IEEE - Aerospace and Electronic Systems - August 2022 - 30
IEEE - Aerospace and Electronic Systems - August 2022 - 31
IEEE - Aerospace and Electronic Systems - August 2022 - 32
IEEE - Aerospace and Electronic Systems - August 2022 - 33
IEEE - Aerospace and Electronic Systems - August 2022 - 34
IEEE - Aerospace and Electronic Systems - August 2022 - 35
IEEE - Aerospace and Electronic Systems - August 2022 - 36
IEEE - Aerospace and Electronic Systems - August 2022 - 37
IEEE - Aerospace and Electronic Systems - August 2022 - 38
IEEE - Aerospace and Electronic Systems - August 2022 - 39
IEEE - Aerospace and Electronic Systems - August 2022 - 40
IEEE - Aerospace and Electronic Systems - August 2022 - 41
IEEE - Aerospace and Electronic Systems - August 2022 - 42
IEEE - Aerospace and Electronic Systems - August 2022 - 43
IEEE - Aerospace and Electronic Systems - August 2022 - 44
IEEE - Aerospace and Electronic Systems - August 2022 - 45
IEEE - Aerospace and Electronic Systems - August 2022 - 46
IEEE - Aerospace and Electronic Systems - August 2022 - 47
IEEE - Aerospace and Electronic Systems - August 2022 - 48
IEEE - Aerospace and Electronic Systems - August 2022 - 49
IEEE - Aerospace and Electronic Systems - August 2022 - 50
IEEE - Aerospace and Electronic Systems - August 2022 - 51
IEEE - Aerospace and Electronic Systems - August 2022 - 52
IEEE - Aerospace and Electronic Systems - August 2022 - 53
IEEE - Aerospace and Electronic Systems - August 2022 - 54
IEEE - Aerospace and Electronic Systems - August 2022 - 55
IEEE - Aerospace and Electronic Systems - August 2022 - 56
IEEE - Aerospace and Electronic Systems - August 2022 - 57
IEEE - Aerospace and Electronic Systems - August 2022 - 58
IEEE - Aerospace and Electronic Systems - August 2022 - 59
IEEE - Aerospace and Electronic Systems - August 2022 - 60
IEEE - Aerospace and Electronic Systems - August 2022 - Cover3
IEEE - Aerospace and Electronic Systems - August 2022 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2022_tutorial
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2021_tutorials
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2019partII
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2018
https://www.nxtbookmedia.com