IEEE - Aerospace and Electronic Systems - August 2022 - 5
Image licensed by Ingram Publishig
(around 100 depending on configuration). On the other hand,
Dai et al. [17] designed a constellation with a multiobjective
genetic algorithm for a regional terrestrial satellite network.
In their article, they reduce the total number of satellites in
the constellation by considering the ratio of actual coverage
ofa single-orbit constellation and the area oftargets.
Given the orbit definition, another factor to be considered is
the ground target scheduling in the case ofsimultaneous calibration
satellite visibility frommultiple GS; as an example, Li et al.
[18] investigated the mission scheduling problem for an Earth
observation satellite with specific and temporal requirements.
Considering the mission scenario the following main
requirements may be highlighted:
1) an orbit with global coverage is needed to serve
seven telescopes spread around the globe;
2) a relatively short time (20 s) is required to transmit
the calibration signal;
3) the strength of the received signal shall produce a
signal-to-noise ratio (SNR) greater than 30 dB;
4) the pointing accuracy of the polarized calibrator
toward the receiving telescope shall be sufficient so
that the signal attenuation is not greater than 50%
compared to the ideal pointing conditions.
A near-polar LEO orbital configuration can, therefore, be
considered, allowing high bandwidth and low communication
latency. Regarding pointing accuracy, most used nanosatellite
ADCS architectures foreseen a suite ofsensors, such as gyros,
magnetometers, horizon sensors, star trackers, and sun sensors,
to estimate the attitude and rotational velocity of the
spacecraft (S/C), while pointing maneuvers are carried out by
attitude actuators, such as reaction wheels (RWs) and magnetic
torquers. In the last few years, it was possible to reach
CubeSat high pointing accuracy even using commercial offthe-shelfADCS.
As an example, Mason et al. [19] found that
the pointing accuracy ofthe XACT three-axis ADCS [20] was
AUGUST 2022
between 15 and 42 arcsec for an orbit altitude ranging from
190 to 400 km. To obtain higher pointing accuracy, some
authors present a two-step pointing architecture. For the
ASTERIA mission, Pong [21] developed a control architecture
based on an XACT ADCS and a piezo stage to tilt the
imager focal plane, pointing accuracies of0.5 arcseconds over
20 minutes were achieved. Subarcsecond accuracies were
obtained with a similar control strategy by Beierle et al. [22].
However, the mission scenarios considered in [19], [21], and
[22] foresee a pointing manoeuvre with null or minimal slew
rate. In the presented case, to ensure that the strength of the
signal received by the telescope under test (TUT) remains
constant during the passage of the satellite, it is necessary to
provide a certain slew rate during pointing, thus a lower accuracy
is expected. For the identified scenario, ADCS actuators
consist of at least three RWs, since they provide sufficient
authority for high precision maneuvers and three magnetorquers
that will be used to compensate the magnetic disturbances.
Inamori et al. [23], [24] presented a technique to improve
nanosat pointing performance with residual magnetic moment
compensation with magnetic torquers. Cervettini et al. [25]
presented a testbed based on spherical air bearing and Helmholtz
cage dedicated to CubeSatmagnetic attitude control system
(ACS). The work by Johnson et al. [26] reported the
feasibility study of a CubeSat-based system for CMB telescope
calibration, however, the analysis considers only one
possible orbit and no implications on the control torques
required by the ADCS are presented.
In general, the selection ofthe operative orbit for a satellite
is a complex andmultidisciplinary process, driven by different
design variables ranging across all aspects of the
mission and strongly related with the requirements ofsatellite
subsystems and onboard payloads; for nanosatellites requiring
calibrated transmission to the ground and with no or the
very limited possibility of orbital mobility, the design of the
ADCS in charge ofS/C attitude control and payload pointing
becomes crucial for orbit selection.
IEEE A&E SYSTEMS MAGAZINE
5
IEEE - Aerospace and Electronic Systems - August 2022
Table of Contents for the Digital Edition of IEEE - Aerospace and Electronic Systems - August 2022
Contents
IEEE - Aerospace and Electronic Systems - August 2022 - Cover1
IEEE - Aerospace and Electronic Systems - August 2022 - Cover2
IEEE - Aerospace and Electronic Systems - August 2022 - Contents
IEEE - Aerospace and Electronic Systems - August 2022 - 2
IEEE - Aerospace and Electronic Systems - August 2022 - 3
IEEE - Aerospace and Electronic Systems - August 2022 - 4
IEEE - Aerospace and Electronic Systems - August 2022 - 5
IEEE - Aerospace and Electronic Systems - August 2022 - 6
IEEE - Aerospace and Electronic Systems - August 2022 - 7
IEEE - Aerospace and Electronic Systems - August 2022 - 8
IEEE - Aerospace and Electronic Systems - August 2022 - 9
IEEE - Aerospace and Electronic Systems - August 2022 - 10
IEEE - Aerospace and Electronic Systems - August 2022 - 11
IEEE - Aerospace and Electronic Systems - August 2022 - 12
IEEE - Aerospace and Electronic Systems - August 2022 - 13
IEEE - Aerospace and Electronic Systems - August 2022 - 14
IEEE - Aerospace and Electronic Systems - August 2022 - 15
IEEE - Aerospace and Electronic Systems - August 2022 - 16
IEEE - Aerospace and Electronic Systems - August 2022 - 17
IEEE - Aerospace and Electronic Systems - August 2022 - 18
IEEE - Aerospace and Electronic Systems - August 2022 - 19
IEEE - Aerospace and Electronic Systems - August 2022 - 20
IEEE - Aerospace and Electronic Systems - August 2022 - 21
IEEE - Aerospace and Electronic Systems - August 2022 - 22
IEEE - Aerospace and Electronic Systems - August 2022 - 23
IEEE - Aerospace and Electronic Systems - August 2022 - 24
IEEE - Aerospace and Electronic Systems - August 2022 - 25
IEEE - Aerospace and Electronic Systems - August 2022 - 26
IEEE - Aerospace and Electronic Systems - August 2022 - 27
IEEE - Aerospace and Electronic Systems - August 2022 - 28
IEEE - Aerospace and Electronic Systems - August 2022 - 29
IEEE - Aerospace and Electronic Systems - August 2022 - 30
IEEE - Aerospace and Electronic Systems - August 2022 - 31
IEEE - Aerospace and Electronic Systems - August 2022 - 32
IEEE - Aerospace and Electronic Systems - August 2022 - 33
IEEE - Aerospace and Electronic Systems - August 2022 - 34
IEEE - Aerospace and Electronic Systems - August 2022 - 35
IEEE - Aerospace and Electronic Systems - August 2022 - 36
IEEE - Aerospace and Electronic Systems - August 2022 - 37
IEEE - Aerospace and Electronic Systems - August 2022 - 38
IEEE - Aerospace and Electronic Systems - August 2022 - 39
IEEE - Aerospace and Electronic Systems - August 2022 - 40
IEEE - Aerospace and Electronic Systems - August 2022 - 41
IEEE - Aerospace and Electronic Systems - August 2022 - 42
IEEE - Aerospace and Electronic Systems - August 2022 - 43
IEEE - Aerospace and Electronic Systems - August 2022 - 44
IEEE - Aerospace and Electronic Systems - August 2022 - 45
IEEE - Aerospace and Electronic Systems - August 2022 - 46
IEEE - Aerospace and Electronic Systems - August 2022 - 47
IEEE - Aerospace and Electronic Systems - August 2022 - 48
IEEE - Aerospace and Electronic Systems - August 2022 - 49
IEEE - Aerospace and Electronic Systems - August 2022 - 50
IEEE - Aerospace and Electronic Systems - August 2022 - 51
IEEE - Aerospace and Electronic Systems - August 2022 - 52
IEEE - Aerospace and Electronic Systems - August 2022 - 53
IEEE - Aerospace and Electronic Systems - August 2022 - 54
IEEE - Aerospace and Electronic Systems - August 2022 - 55
IEEE - Aerospace and Electronic Systems - August 2022 - 56
IEEE - Aerospace and Electronic Systems - August 2022 - 57
IEEE - Aerospace and Electronic Systems - August 2022 - 58
IEEE - Aerospace and Electronic Systems - August 2022 - 59
IEEE - Aerospace and Electronic Systems - August 2022 - 60
IEEE - Aerospace and Electronic Systems - August 2022 - Cover3
IEEE - Aerospace and Electronic Systems - August 2022 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2022_tutorial
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2021_tutorials
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2019partII
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2018
https://www.nxtbookmedia.com