IEEE - Aerospace and Electronic Systems - August 2022 - 7

Avram et al.
Table 1.
Provisional List of Telescopes, GS, and Their Geographical Coordinates
Site
South Pole station
Dome-C station
Atacama
Region Latitude Longitude Altitude AMSL
Antarctica 9000'00 " S 0000'00 " E
Antarctica 7505'59 " S 12319'56 " E
Mario Zucchelli station Antarctica 7441'42 " S 16406'50 " E
Chile 2257'31 " S 6747'15 " W
White Mountain
Tenerife
2800 m
3233 m
20 m
5190 m
CA -USA 3734'59 " N 11814'12 " W 3800 m
Canary Is. 2818'00 " N 1630'35 " W
Longyearbyen Airport Svalbard 7814'46 " N 1527'56 " E
guarantee a visibility time sufficiently long due to the high
relative speed between the LEO satellite and the Earth's
surface. Therefore, an active ACS, whose aim is to perform
the tracking of the TUT during the satellite passage,
is required to increase the period in which the optical axis
of the calibrated payload points toward the ground telescope.
Consequently, the minimum elevation from the
ground at which the calibration can occur is significantly
reduced. Figure 2 schematically shows the pointing procedure
considering a plane case in which the satellite passes
perfectly above the TUT. Once the satellite enters the
GS's visibility region, the ADCS starts to point the optical
axis of the calibrated payload toward the specific groundbased
TUT, tracking such position during the entire satellite-to-telescope
visibility period. In reality, the situation
2390 m
28 m
is more complicated than just presented, as the satellite never
passes perfectly over the telescopes, and a tridimensional
approach is required to estimate the rotation needed to track
each telescope. The determination of the S/C to radio telescope
visibility periods and the geometrical characterization
ofthe S/C-telescope link allow the calculation ofthe required
repointing velocity needed by the CubeSat to continuously
adjust its attitude during the visibility period and to verify if it
is compatible with the performance of a typical CubeSat
ADCS. Moreover, as the satellite elevation increases with
respect to the ground-based telescope, the distance between
them decreases and, therefore, the signal intensity varies, as
qualitatively shown in Figure 2.
CUBESAT DETECTABILITY
To be detectable by the TUT, the power ofthe received signal
shall be higher than the noise level ofthe calibration measurement.
Multiple factors determine the SNR ofthe received signal
and some simplifying assumptions have been made:
spatial loss has been considered using the Gaussian beam
approximation, and line loss has been neglected. Using the
link budget equation, see [2], the SNR of a signal transmitted
toward the receiving TUT is given by
SNR ¼
PrLuLa
Prms
(1)
where Pr is the received power, Prms is the average noise
Figure 2.
Sketch of satellite repointing during orbital passage and received
signal evolution versus satellite position. The optical axis of the
calibrated payload in blue and the edges of the GS's visibility
region in green.
AUGUST 2022
power, Lu is the pointing loss (attenuation due to the partial
intersection between antennas' main lobes), and La is
the atmospheric loss. The power received by the TUT
aperture is as a function of the distance z between the
MAC and the TUT, and it has been modeled using the
Gaussian beam equation given by [27]
PrðzÞ¼ P0 1 e
IEEE A&E SYSTEMS MAGAZINE
2r2
v2ðzÞ
(2)
7

IEEE - Aerospace and Electronic Systems - August 2022

Table of Contents for the Digital Edition of IEEE - Aerospace and Electronic Systems - August 2022

Contents
IEEE - Aerospace and Electronic Systems - August 2022 - Cover1
IEEE - Aerospace and Electronic Systems - August 2022 - Cover2
IEEE - Aerospace and Electronic Systems - August 2022 - Contents
IEEE - Aerospace and Electronic Systems - August 2022 - 2
IEEE - Aerospace and Electronic Systems - August 2022 - 3
IEEE - Aerospace and Electronic Systems - August 2022 - 4
IEEE - Aerospace and Electronic Systems - August 2022 - 5
IEEE - Aerospace and Electronic Systems - August 2022 - 6
IEEE - Aerospace and Electronic Systems - August 2022 - 7
IEEE - Aerospace and Electronic Systems - August 2022 - 8
IEEE - Aerospace and Electronic Systems - August 2022 - 9
IEEE - Aerospace and Electronic Systems - August 2022 - 10
IEEE - Aerospace and Electronic Systems - August 2022 - 11
IEEE - Aerospace and Electronic Systems - August 2022 - 12
IEEE - Aerospace and Electronic Systems - August 2022 - 13
IEEE - Aerospace and Electronic Systems - August 2022 - 14
IEEE - Aerospace and Electronic Systems - August 2022 - 15
IEEE - Aerospace and Electronic Systems - August 2022 - 16
IEEE - Aerospace and Electronic Systems - August 2022 - 17
IEEE - Aerospace and Electronic Systems - August 2022 - 18
IEEE - Aerospace and Electronic Systems - August 2022 - 19
IEEE - Aerospace and Electronic Systems - August 2022 - 20
IEEE - Aerospace and Electronic Systems - August 2022 - 21
IEEE - Aerospace and Electronic Systems - August 2022 - 22
IEEE - Aerospace and Electronic Systems - August 2022 - 23
IEEE - Aerospace and Electronic Systems - August 2022 - 24
IEEE - Aerospace and Electronic Systems - August 2022 - 25
IEEE - Aerospace and Electronic Systems - August 2022 - 26
IEEE - Aerospace and Electronic Systems - August 2022 - 27
IEEE - Aerospace and Electronic Systems - August 2022 - 28
IEEE - Aerospace and Electronic Systems - August 2022 - 29
IEEE - Aerospace and Electronic Systems - August 2022 - 30
IEEE - Aerospace and Electronic Systems - August 2022 - 31
IEEE - Aerospace and Electronic Systems - August 2022 - 32
IEEE - Aerospace and Electronic Systems - August 2022 - 33
IEEE - Aerospace and Electronic Systems - August 2022 - 34
IEEE - Aerospace and Electronic Systems - August 2022 - 35
IEEE - Aerospace and Electronic Systems - August 2022 - 36
IEEE - Aerospace and Electronic Systems - August 2022 - 37
IEEE - Aerospace and Electronic Systems - August 2022 - 38
IEEE - Aerospace and Electronic Systems - August 2022 - 39
IEEE - Aerospace and Electronic Systems - August 2022 - 40
IEEE - Aerospace and Electronic Systems - August 2022 - 41
IEEE - Aerospace and Electronic Systems - August 2022 - 42
IEEE - Aerospace and Electronic Systems - August 2022 - 43
IEEE - Aerospace and Electronic Systems - August 2022 - 44
IEEE - Aerospace and Electronic Systems - August 2022 - 45
IEEE - Aerospace and Electronic Systems - August 2022 - 46
IEEE - Aerospace and Electronic Systems - August 2022 - 47
IEEE - Aerospace and Electronic Systems - August 2022 - 48
IEEE - Aerospace and Electronic Systems - August 2022 - 49
IEEE - Aerospace and Electronic Systems - August 2022 - 50
IEEE - Aerospace and Electronic Systems - August 2022 - 51
IEEE - Aerospace and Electronic Systems - August 2022 - 52
IEEE - Aerospace and Electronic Systems - August 2022 - 53
IEEE - Aerospace and Electronic Systems - August 2022 - 54
IEEE - Aerospace and Electronic Systems - August 2022 - 55
IEEE - Aerospace and Electronic Systems - August 2022 - 56
IEEE - Aerospace and Electronic Systems - August 2022 - 57
IEEE - Aerospace and Electronic Systems - August 2022 - 58
IEEE - Aerospace and Electronic Systems - August 2022 - 59
IEEE - Aerospace and Electronic Systems - August 2022 - 60
IEEE - Aerospace and Electronic Systems - August 2022 - Cover3
IEEE - Aerospace and Electronic Systems - August 2022 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2022_tutorial
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2021_tutorials
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2019partII
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2018
https://www.nxtbookmedia.com