IEEE - Aerospace and Electronic Systems - August 2023 - 50

An Overview of Radar Operation in the Presence of Diminishing Spectrum
Table 1.
Radar Frequency Selection Considerations
Factor
Range Resolution
Frequency
Type
Design Rationale
IBW Resolve closely spaced targets, minimize distributed clutter
RCS, facilitate radar image quality and target discrimination
Electronic Protection OBW or
IBW
Atmospheric
Propagation
Clutter Phenomenology OBW and
IBW
Target Response
Materials Penetration
Platform Mounting
Technology and
Manufacturing
Readiness
OBW and
IBW
Mode Implementation OBW and
IBW
Frequency variability used to avoid in-band interference or
spread interference power
OBW Manage propagation loss to control radar operating range and
geometry
Select operating frequency to affect clutter reflectivity or IBW to
reduce the RCS of distributed clutter by reducing clutter cell
area
Optimize frequency selection to enhance target signature and
IBW to resolve target features
OBW Select frequency to penetrate or reflect from materials
Different modes favor different operating frequencies
OBW Limited payload capacity favors higher frequency systems to
provide adequate antenna gain and suitable beamwidth
OBW and
IBW
Compromise based on RF hardware availability and datahandling
capacity
Many radars employ pulse compression waveforms
[1], [2], [3]. Pulse compression allows the radar to
achieve higher average power while maintaining the
range resolution of a much shorter pulse. The radar
increases duty cycle by transmitting a longer pulse for a
given pulse repetition interval (PRI), but encodes the
pulse with a waveform with bandwidth B. The resulting
range resolution is dR ¼ c=ð2BÞ [1]. Figure 1 shows
radar resolution as a function of bandwidth, along with
ground range resolution for several grazing angles cg,
where grazing angle is the angle that subtends the radar
line of site and a tangent to the Earth's surface. As
seen, finer resolution in slant range translates to finer
ground range resolution. Since the RCS of distributed
clutter is, sc ¼ s0Ac, where s0 is clutter backscatter per
unit area and Ac
is the clutter cell area, finer ground
range resolution leads to smaller cell area and thus
reduced clutter signature. With increasing bandwidth,
the radar can collect a high range resolution (HRR) profile
of the target to facilitate target discrimination [15].
To discern target features, HRRs may use bandwidths
in excess of several hundred megahertz to achieve range
resolution finer than one third of a meter. Stretch processing
is sometimes used to mitigate the computational
burden of pulse compressing high bandwidth waveforms
[16].
50
Radar systems strive to approach noise-limited performance
through various interference mitigation methods.
Electronic protection (EP) refers to various methods to
assure radar performance in the presence of RFI, whether
the RFI is intentional or not. Frequency agility and waveform
selection play an important role in EP [14]. With sufficient
OBW, the radar can hop to a new frequency upon
sensing in-band interference, thus avoiding RFI. Conversely,
wide IBW allows the radar to spread its energy,
Figure 1.
Range resolution in slant and ground planes.
IEEE A&E SYSTEMS MAGAZINE
AUGUST 2023

IEEE - Aerospace and Electronic Systems - August 2023

Table of Contents for the Digital Edition of IEEE - Aerospace and Electronic Systems - August 2023

Contents
IEEE - Aerospace and Electronic Systems - August 2023 - Cover1
IEEE - Aerospace and Electronic Systems - August 2023 - Cover2
IEEE - Aerospace and Electronic Systems - August 2023 - Contents
IEEE - Aerospace and Electronic Systems - August 2023 - 2
IEEE - Aerospace and Electronic Systems - August 2023 - 3
IEEE - Aerospace and Electronic Systems - August 2023 - 4
IEEE - Aerospace and Electronic Systems - August 2023 - 5
IEEE - Aerospace and Electronic Systems - August 2023 - 6
IEEE - Aerospace and Electronic Systems - August 2023 - 7
IEEE - Aerospace and Electronic Systems - August 2023 - 8
IEEE - Aerospace and Electronic Systems - August 2023 - 9
IEEE - Aerospace and Electronic Systems - August 2023 - 10
IEEE - Aerospace and Electronic Systems - August 2023 - 11
IEEE - Aerospace and Electronic Systems - August 2023 - 12
IEEE - Aerospace and Electronic Systems - August 2023 - 13
IEEE - Aerospace and Electronic Systems - August 2023 - 14
IEEE - Aerospace and Electronic Systems - August 2023 - 15
IEEE - Aerospace and Electronic Systems - August 2023 - 16
IEEE - Aerospace and Electronic Systems - August 2023 - 17
IEEE - Aerospace and Electronic Systems - August 2023 - 18
IEEE - Aerospace and Electronic Systems - August 2023 - 19
IEEE - Aerospace and Electronic Systems - August 2023 - 20
IEEE - Aerospace and Electronic Systems - August 2023 - 21
IEEE - Aerospace and Electronic Systems - August 2023 - 22
IEEE - Aerospace and Electronic Systems - August 2023 - 23
IEEE - Aerospace and Electronic Systems - August 2023 - 24
IEEE - Aerospace and Electronic Systems - August 2023 - 25
IEEE - Aerospace and Electronic Systems - August 2023 - 26
IEEE - Aerospace and Electronic Systems - August 2023 - 27
IEEE - Aerospace and Electronic Systems - August 2023 - 28
IEEE - Aerospace and Electronic Systems - August 2023 - 29
IEEE - Aerospace and Electronic Systems - August 2023 - 30
IEEE - Aerospace and Electronic Systems - August 2023 - 31
IEEE - Aerospace and Electronic Systems - August 2023 - 32
IEEE - Aerospace and Electronic Systems - August 2023 - 33
IEEE - Aerospace and Electronic Systems - August 2023 - 34
IEEE - Aerospace and Electronic Systems - August 2023 - 35
IEEE - Aerospace and Electronic Systems - August 2023 - 36
IEEE - Aerospace and Electronic Systems - August 2023 - 37
IEEE - Aerospace and Electronic Systems - August 2023 - 38
IEEE - Aerospace and Electronic Systems - August 2023 - 39
IEEE - Aerospace and Electronic Systems - August 2023 - 40
IEEE - Aerospace and Electronic Systems - August 2023 - 41
IEEE - Aerospace and Electronic Systems - August 2023 - 42
IEEE - Aerospace and Electronic Systems - August 2023 - 43
IEEE - Aerospace and Electronic Systems - August 2023 - 44
IEEE - Aerospace and Electronic Systems - August 2023 - 45
IEEE - Aerospace and Electronic Systems - August 2023 - 46
IEEE - Aerospace and Electronic Systems - August 2023 - 47
IEEE - Aerospace and Electronic Systems - August 2023 - 48
IEEE - Aerospace and Electronic Systems - August 2023 - 49
IEEE - Aerospace and Electronic Systems - August 2023 - 50
IEEE - Aerospace and Electronic Systems - August 2023 - 51
IEEE - Aerospace and Electronic Systems - August 2023 - 52
IEEE - Aerospace and Electronic Systems - August 2023 - 53
IEEE - Aerospace and Electronic Systems - August 2023 - 54
IEEE - Aerospace and Electronic Systems - August 2023 - 55
IEEE - Aerospace and Electronic Systems - August 2023 - 56
IEEE - Aerospace and Electronic Systems - August 2023 - 57
IEEE - Aerospace and Electronic Systems - August 2023 - 58
IEEE - Aerospace and Electronic Systems - August 2023 - 59
IEEE - Aerospace and Electronic Systems - August 2023 - 60
IEEE - Aerospace and Electronic Systems - August 2023 - 61
IEEE - Aerospace and Electronic Systems - August 2023 - 62
IEEE - Aerospace and Electronic Systems - August 2023 - Cover3
IEEE - Aerospace and Electronic Systems - August 2023 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2022_tutorial
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2021_tutorials
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2019partII
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2018
https://www.nxtbookmedia.com