IEEE Aerospace and Electronic Systems Magazine - July 2020 - 34

Improving Small Satellite Communications and Tracking in Deep Space

Figure 6.
MarCO UHF loop antenna mounted on spacecraft (antenna shown deployed).

horizon coverage for MSL relay link support to the Odyssey and MRO orbiters.7
Proximity links typically utilize broad-beam, low-gain
antennas with unique coverage requirements. Existing
antenna designs can be adapted for some applications;
however, since antenna performance can be influenced by
the vehicle mounting environment, new antenna designs
are often needed. For example, most of the antennas illustrated in Figure 4 were new designs developed to meet the
unique MSL mission requirements, but they were subsequently "built to print" for M2020 because the mounting
environment was not changed significantly. The RUHF
antenna has also been adapted for use on the Mars Atmosphere and Volatile Evolution (MAVEN) orbiter [23],
[24] and the Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (INSIGHT) lander
[25], and is suitable for many large and medium size landers and orbiters; however, it is too large for SmallSats. For
instance, the MarCO UHF link required a right-hand circularly polarized (RHCP) antenna with gain greater than
2.5 dBi over an azimuth plane coverage area Æ30 from
boresight, a stowed volume of 20 cm  20 cm  1.6 cm
and mass less than 400 gm. To meet this, a unique new
RHCP deployable square loop antenna was developed
(see Figure 6).
Since UHF has been the primary telecom band for low
earth orbit (LEO) CubeSats, numerous deployable dipoletype antennas have been developed and are commercially
available. Deployable UHF helix antennas have also been
developed for specific applications [26], [27]. Nevertheless,
7

Both Odyssey and MRO are existing Mars communications relay
orbiters.

34

there is a need to develop CubeSat low-gain proximity
antennas, especially in the UHF band. Currently available
CubeSat antennas were developed for low cost, risk tolerant
LEO missions and have not been qualified for NASA deep
space communications requirements. Moreover, it is important to have a significant range of design options available to
meet the wide variety of requirements and accommodation
issues that can arise in a CubeSat or SmallSat mission. Due
to the fast pace of CubeSat development, it is often not practical to develop a new flight antenna as part of the mission.
Consequently, it would be beneficial for NASA to identify
the range of likely antenna requirements and fund developments in those areas.
As noted earlier, proximity links may also use higher
gain, directional antennas to achieve higher data rates. One
example of this is the deep impact mission [28], which
used an 18 element S-band patch array to achieve 18.5 dBi
gain as required for the data link that provided video of the
comet impactor collision. Since high-gain antennas have a
narrow beamwidth, in most cases a beam pointing mechanism such as a gimbal is required. For instance, a higher
data rate Mars orbiter UHF link to landed assets, such as
MSL or M2020, could be achieved with a 3 Â 3 element
patch array with a $27 beamwidth that provides about 15
dBi gain. However, this would require a mechanical gimbal
to accurately point the 1.5 m  1.5 m UHF antenna toward
a rover. Accommodating such a large antenna is difficult
and clearly illustrates the advantage of higher frequencies,
such as X-band, when high data rates are required. Note
that for the same gain, an X-band antenna is about 100
times smaller than its UHF counterpart (surface area).
Active array beam pointing, discussed in Part I, may also
be attractive for this purpose.

IEEE A&E SYSTEMS MAGAZINE

JULY 2020



IEEE Aerospace and Electronic Systems Magazine - July 2020

Table of Contents for the Digital Edition of IEEE Aerospace and Electronic Systems Magazine - July 2020

Contents
IEEE Aerospace and Electronic Systems Magazine - July 2020 - Cover1
IEEE Aerospace and Electronic Systems Magazine - July 2020 - Cover2
IEEE Aerospace and Electronic Systems Magazine - July 2020 - Contents
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 2
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 3
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 4
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 5
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 6
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 7
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 8
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 9
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 10
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 11
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 12
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 13
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 14
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 15
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 16
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 17
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 18
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 19
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 20
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 21
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 22
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 23
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 24
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 25
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 26
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 27
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 28
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 29
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 30
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 31
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 32
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 33
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 34
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 35
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 36
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 37
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 38
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 39
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 40
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 41
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 42
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 43
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 44
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 45
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 46
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 47
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 48
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 49
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 50
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 51
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 52
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 53
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 54
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 55
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 56
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 57
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 58
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 59
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 60
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 61
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 62
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 63
IEEE Aerospace and Electronic Systems Magazine - July 2020 - 64
IEEE Aerospace and Electronic Systems Magazine - July 2020 - Cover3
IEEE Aerospace and Electronic Systems Magazine - July 2020 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2022_tutorial
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2021_tutorials
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2019partII
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2018
https://www.nxtbookmedia.com