IEEE - Aerospace and Electronic Systems - July 2021 - 2
In This Issue -Technically
MACHINE LEARNING SUPPORT FOR RADAR-BASED SURVEILLANCE SYSTEMS
Radar-based surveillance systems already consist ofhighly complex tracking, sensor data fusion, and identification algorithms,
which track the trajectories ofmoving objects. They are embedded in a real-time middleware with a straight forward
processing chain according to the Joint Directors of Laboratories (JDL) fusion model. With the spread of new
technologies, e.g., big data, distributed data processing and machine learning open up new possibilities for surveillance
systems. Commercial data providers provide trajectories of all kinds of vessels and aircraft worldwide. Best known are
automatic dependent surveillance-broadcast and (satellite-) automatic identification systems used in air and maritime surveillance.
Both are cooperative systems and are integrated as the sensor source in surveillance systems. An advantage of
these trajectories is, in addition to the unique identification of the object by an identifier [e.g., ICAO code or MMSI] that
can be easily assigned to the generating objects, they contain additional context data that can be used as labels for supervised
machine learning. Also they are similar in structure to radar tracks and are ideal for analysis and training oflearning
algorithms. This article gives an overview ofhow these new technologies, in combination with big data oftrajectories, can
be integrated into existing surveillance systems and howmachine learning can help to improve situational awareness.
A SURVEY OF ARTIFICIAL INTELLIGENCE APPROACHES FOR TARGET SURVEILLANCE
WITH RADAR SENSORS
With the rising popularity of artificial intelligence (AI), target surveillance based on radar sensors aims to tap the
potential of AI enabled through today's computational capacities. We present a survey of past approaches as well as
recent hot topics in the area of AI approaches for target surveillance with radar sensors that reveal potential for the
development of novel approaches in research and practice. We focus on the major research streams of clutter identification,
target classification, and target tracking, which are important for an adequate operation of radar applications
and well suited for the use of AI. This article contributes to a better understanding of how AI can be applied to assist
conventional radar sensor approaches, or even serve as an alternative.
A SURVEY OF MULTIMODAL SENSOR FUSION FOR PASSIVE RF AND EO INFORMATION INTEGRATION
Integrating information collected by different types of sensors observing the same or related phenomenon can lead to
more accurate and robust decision making. This article reviews sensor fusion approaches to achieve passive radio frequency
(RF) and electro-optical (EO) sensor fusion and presents the proposed fusion of EO/RF neural network
(FERNN). While research has been conducted to integrate complementary data collected by EO and RF modalities,
the processing of RF data usually applies traditional features, such as Doppler. This article explores the viability of
using the histogram of I/Q (in-phase and quadrature) data for the purposes of augmenting the detection accuracy that
EO input alone is incapable of achieving. Specifically, by processing the histogram of I/Q data via deep learning and
enhancing feature input for neural network fusion. Using the simulated data from the Digital Imaging and Remote
Sensing Image Generation dataset, FERNN can achieve 95% accuracy in vehicle detection and scenario categorization,
which is a 23% improvement over the accuracy achieved by a stand-alone EO sensor.
ARTIFICIAL INTELLIGENCE AND DATA FUSION AT THE EDGE
Artificial intelligence (AI), owing to recent breakthroughs in deep learning, has revolutionized applications and services in
almost all technology domains including aerospace. AI and deep learning rely on huge amounts of training data that are
mostly generated at the network edge by Internet ofThings (IoT) devices and sensors. Bringing the sensed data from the
edge ofa distributed network to a centralized cloud is often infeasible because ofthe massive data volume, limited network
bandwidth, and real-time application constraints. Consequently, there is a desire to push AI frontiers to the network edge
toward utilizing the enormous amount ofdata generated by IoT devices near the data source. The merger ofedge computing
and AI has engendered a new discipline, that is, AIat the edge or edge intelligence. To help AI make sense ofgigantic
data at the network edge, datafusion is ofparamount significance and goes hand in hand with AI. This article focuses on
data fusion and AI at the edge. In this article, we propose a framework for data fusion and AI processing at the edge. We
then provide a comparative discussion ofdifferent data fusion and AI models and architectures. We discuss multiple levels
offusion and different types ofAI, and how different types ofAI align with different levels offusion. We then highlight
the benefits ofcombining data fusion with AI at the edge. The methods ofAI and data fusion at the edge detailed in this article
are applicable to many application domains including aerospace systems. We evaluate the effectiveness ofcombined
data fusion and AI at the edge using convolutional neural network models and multiple hardware platforms suitable for
edge computing. Experimental results reveal that combining AI with data fusion can impart a speedup of9.8 times, while
reducing energy consumption up to 88.5% over AI without data fusion. Furthermore, results demonstrate that data fusion
either maintains or improves the accuracy of AI in most cases. For our experiments, data fusion imparts a maximum
improvement of15.8% in accuracy to AI.
2
IEEE A&E SYSTEMS MAGAZINE
JULY 2021
IEEE - Aerospace and Electronic Systems - July 2021
Table of Contents for the Digital Edition of IEEE - Aerospace and Electronic Systems - July 2021
Contents
IEEE - Aerospace and Electronic Systems - July 2021 - Cover1
IEEE - Aerospace and Electronic Systems - July 2021 - Cover2
IEEE - Aerospace and Electronic Systems - July 2021 - Contents
IEEE - Aerospace and Electronic Systems - July 2021 - 2
IEEE - Aerospace and Electronic Systems - July 2021 - 3
IEEE - Aerospace and Electronic Systems - July 2021 - 4
IEEE - Aerospace and Electronic Systems - July 2021 - 5
IEEE - Aerospace and Electronic Systems - July 2021 - 6
IEEE - Aerospace and Electronic Systems - July 2021 - 7
IEEE - Aerospace and Electronic Systems - July 2021 - 8
IEEE - Aerospace and Electronic Systems - July 2021 - 9
IEEE - Aerospace and Electronic Systems - July 2021 - 10
IEEE - Aerospace and Electronic Systems - July 2021 - 11
IEEE - Aerospace and Electronic Systems - July 2021 - 12
IEEE - Aerospace and Electronic Systems - July 2021 - 13
IEEE - Aerospace and Electronic Systems - July 2021 - 14
IEEE - Aerospace and Electronic Systems - July 2021 - 15
IEEE - Aerospace and Electronic Systems - July 2021 - 16
IEEE - Aerospace and Electronic Systems - July 2021 - 17
IEEE - Aerospace and Electronic Systems - July 2021 - 18
IEEE - Aerospace and Electronic Systems - July 2021 - 19
IEEE - Aerospace and Electronic Systems - July 2021 - 20
IEEE - Aerospace and Electronic Systems - July 2021 - 21
IEEE - Aerospace and Electronic Systems - July 2021 - 22
IEEE - Aerospace and Electronic Systems - July 2021 - 23
IEEE - Aerospace and Electronic Systems - July 2021 - 24
IEEE - Aerospace and Electronic Systems - July 2021 - 25
IEEE - Aerospace and Electronic Systems - July 2021 - 26
IEEE - Aerospace and Electronic Systems - July 2021 - 27
IEEE - Aerospace and Electronic Systems - July 2021 - 28
IEEE - Aerospace and Electronic Systems - July 2021 - 29
IEEE - Aerospace and Electronic Systems - July 2021 - 30
IEEE - Aerospace and Electronic Systems - July 2021 - 31
IEEE - Aerospace and Electronic Systems - July 2021 - 32
IEEE - Aerospace and Electronic Systems - July 2021 - 33
IEEE - Aerospace and Electronic Systems - July 2021 - 34
IEEE - Aerospace and Electronic Systems - July 2021 - 35
IEEE - Aerospace and Electronic Systems - July 2021 - 36
IEEE - Aerospace and Electronic Systems - July 2021 - 37
IEEE - Aerospace and Electronic Systems - July 2021 - 38
IEEE - Aerospace and Electronic Systems - July 2021 - 39
IEEE - Aerospace and Electronic Systems - July 2021 - 40
IEEE - Aerospace and Electronic Systems - July 2021 - 41
IEEE - Aerospace and Electronic Systems - July 2021 - 42
IEEE - Aerospace and Electronic Systems - July 2021 - 43
IEEE - Aerospace and Electronic Systems - July 2021 - 44
IEEE - Aerospace and Electronic Systems - July 2021 - 45
IEEE - Aerospace and Electronic Systems - July 2021 - 46
IEEE - Aerospace and Electronic Systems - July 2021 - 47
IEEE - Aerospace and Electronic Systems - July 2021 - 48
IEEE - Aerospace and Electronic Systems - July 2021 - 49
IEEE - Aerospace and Electronic Systems - July 2021 - 50
IEEE - Aerospace and Electronic Systems - July 2021 - 51
IEEE - Aerospace and Electronic Systems - July 2021 - 52
IEEE - Aerospace and Electronic Systems - July 2021 - 53
IEEE - Aerospace and Electronic Systems - July 2021 - 54
IEEE - Aerospace and Electronic Systems - July 2021 - 55
IEEE - Aerospace and Electronic Systems - July 2021 - 56
IEEE - Aerospace and Electronic Systems - July 2021 - 57
IEEE - Aerospace and Electronic Systems - July 2021 - 58
IEEE - Aerospace and Electronic Systems - July 2021 - 59
IEEE - Aerospace and Electronic Systems - July 2021 - 60
IEEE - Aerospace and Electronic Systems - July 2021 - 61
IEEE - Aerospace and Electronic Systems - July 2021 - 62
IEEE - Aerospace and Electronic Systems - July 2021 - 63
IEEE - Aerospace and Electronic Systems - July 2021 - 64
IEEE - Aerospace and Electronic Systems - July 2021 - 65
IEEE - Aerospace and Electronic Systems - July 2021 - 66
IEEE - Aerospace and Electronic Systems - July 2021 - 67
IEEE - Aerospace and Electronic Systems - July 2021 - 68
IEEE - Aerospace and Electronic Systems - July 2021 - 69
IEEE - Aerospace and Electronic Systems - July 2021 - 70
IEEE - Aerospace and Electronic Systems - July 2021 - 71
IEEE - Aerospace and Electronic Systems - July 2021 - 72
IEEE - Aerospace and Electronic Systems - July 2021 - 73
IEEE - Aerospace and Electronic Systems - July 2021 - 74
IEEE - Aerospace and Electronic Systems - July 2021 - 75
IEEE - Aerospace and Electronic Systems - July 2021 - 76
IEEE - Aerospace and Electronic Systems - July 2021 - 77
IEEE - Aerospace and Electronic Systems - July 2021 - 78
IEEE - Aerospace and Electronic Systems - July 2021 - 79
IEEE - Aerospace and Electronic Systems - July 2021 - 80
IEEE - Aerospace and Electronic Systems - July 2021 - 81
IEEE - Aerospace and Electronic Systems - July 2021 - 82
IEEE - Aerospace and Electronic Systems - July 2021 - 83
IEEE - Aerospace and Electronic Systems - July 2021 - 84
IEEE - Aerospace and Electronic Systems - July 2021 - 85
IEEE - Aerospace and Electronic Systems - July 2021 - 86
IEEE - Aerospace and Electronic Systems - July 2021 - 87
IEEE - Aerospace and Electronic Systems - July 2021 - 88
IEEE - Aerospace and Electronic Systems - July 2021 - 89
IEEE - Aerospace and Electronic Systems - July 2021 - 90
IEEE - Aerospace and Electronic Systems - July 2021 - 91
IEEE - Aerospace and Electronic Systems - July 2021 - 92
IEEE - Aerospace and Electronic Systems - July 2021 - 93
IEEE - Aerospace and Electronic Systems - July 2021 - 94
IEEE - Aerospace and Electronic Systems - July 2021 - 95
IEEE - Aerospace and Electronic Systems - July 2021 - 96
IEEE - Aerospace and Electronic Systems - July 2021 - 97
IEEE - Aerospace and Electronic Systems - July 2021 - 98
IEEE - Aerospace and Electronic Systems - July 2021 - 99
IEEE - Aerospace and Electronic Systems - July 2021 - 100
IEEE - Aerospace and Electronic Systems - July 2021 - 101
IEEE - Aerospace and Electronic Systems - July 2021 - 102
IEEE - Aerospace and Electronic Systems - July 2021 - 103
IEEE - Aerospace and Electronic Systems - July 2021 - 104
IEEE - Aerospace and Electronic Systems - July 2021 - 105
IEEE - Aerospace and Electronic Systems - July 2021 - 106
IEEE - Aerospace and Electronic Systems - July 2021 - 107
IEEE - Aerospace and Electronic Systems - July 2021 - 108
IEEE - Aerospace and Electronic Systems - July 2021 - 109
IEEE - Aerospace and Electronic Systems - July 2021 - 110
IEEE - Aerospace and Electronic Systems - July 2021 - 111
IEEE - Aerospace and Electronic Systems - July 2021 - 112
IEEE - Aerospace and Electronic Systems - July 2021 - 113
IEEE - Aerospace and Electronic Systems - July 2021 - 114
IEEE - Aerospace and Electronic Systems - July 2021 - 115
IEEE - Aerospace and Electronic Systems - July 2021 - 116
IEEE - Aerospace and Electronic Systems - July 2021 - 117
IEEE - Aerospace and Electronic Systems - July 2021 - 118
IEEE - Aerospace and Electronic Systems - July 2021 - 119
IEEE - Aerospace and Electronic Systems - July 2021 - 120
IEEE - Aerospace and Electronic Systems - July 2021 - Cover3
IEEE - Aerospace and Electronic Systems - July 2021 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2022_tutorial
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2021_tutorials
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2019partII
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2018
https://www.nxtbookmedia.com