IEEE - Aerospace and Electronic Systems - March 2020 - 8

BioSentinel: A 6U Nanosatellite for Deep-Space Biological Science
Table 1.

Ionizing Radiation Dose Rates for Various Regions of Outer Space

Orbit

LEO
ISS in LEO
High-inclination
LEOd
Sun-synchronous
LEO, incl. polar
Lunar orbitf
Interplanetary
spaceg

Altitude (from
Earth's surface, km)

300-2000
330-435

a

Inclination

0 -55

e-, pþ

90-127 min



-

91-93 min

51.6


Orbital period
about Earth

Particlee
radiation
sources

þ

e ,p
þ

Shielding-dependent
monthly radiation dose
rangeb (Gy)
1 mmc

5 mmc

0.0061-660

0.0041-36

5-30

0.34-0.020

400-2000



65 -115

92-127 min

e , p , GCRs,
SEPs

40-1500

0.69-140

400-1000 (typical)

$98 and
others

92-105 min

e-, pþ, GCRs,
SEPs

40-180

0.86-10

perigee: 363 104
apogee: 405 700

5

27 d

GCRs, SEPs,
n0

7.7-96

0.38-15

N/A

GCRs, SEPs

11-140

0.55-21

> $ 100 000

-

a 
0 -90 inclinations are prograde orbits; 90 -180 are retrograde orbits. bAssuming an exposure over a solid angle of 4p steradians for 30
days, midway between solar minimum and maximum; dose can vary widely due to solar activity. Data sources and models are described in
[2]. cShielding expressed as equivalent thickness of aluminum. dIncludes orbits near latitudes of Arctic/Antarctic circles, including polar
and near-polar orbits. ePredominant sources; e- ¼ electrons, pþ ¼ protons, n0 ¼ neutrons; GCR ¼ galactic cosmic ray; SEP ¼ solar energetic particle. fRadiation estimates are for a 50-km lunar orbit about the Moon with a 113-min orbital period. gGenerally representative of
transit to a variety of locations around the solar system, including Mars, its moons, the moons of Jupiter, and various near-Earth objects.

wild-type strains, the effects of radiation upon the DNA
DSB repair process can be monitored.

INTRODUCTION TO THE SCIENCE MEASUREMENTS OF
BIOSENTINEL
NASA's BioSentinel mission is the first step in an emergent
effort to understand the impacts of the deep-space environment in situ by sending terrestrial organisms to live beyond
the radiation shield of Earth's magnetic field and monitoring their responses. The BioSentinel Nanosatellite, a 6U

Figure 1.
Solid model of BioSentinel 6U nanosatellite in interplanetary space.

8

deep-space cubesat housing microorganisms grown and
characterized as a function of the type and amount of radiation to which they are exposed over a duration of three to
nine months in space, is due to launch in 2020. It is the sole
biological mission among the secondary payloads on
NASA's Artemis-1, planned to be carried into space by
NASA's Space Launch System (SLS). Upon ejection from
the launch vehicle upper stage following Orion capsule
separation, BioSentinel will be deployed on a trajectory
that results in a lunar flyby leading to a (permanent) heliocentric orbit well beyond Earth's magnetic field and radiation belts. A companion mission scheduled to operate in
LEO aboard the International Space Station (ISS), safely
within the geomagnetic field, along with an identical
ground-control payload, will enable comparison of the
radiation environments of deep space, LEO, and Earth; the
three locales also provide controls for effects related to two
gravitational environments, i.e., micro-g (on ISS and the
BioSentinel Nanosatellite) and terrestrial gravity.
The comparative rates of growth and metabolism of
specimens of radiation-sensitized and wild-type yeast will
be assessed in BioSentinel's first payload, a microfluidicsenabled system with independent temperature-controlled
culture microwells. Multiple replicate cultures of both
strains are loaded and dried in the microwells in microfluidic
minicards prior to flight, then activated over a series of timepoints spanning the mission duration. Until the time of their
growth, each grouping of microwells is maintained in a state
of low-humidity, low-temperature stasis-much as baker's
yeast are preserved in the refrigerator-to promote

IEEE A&E SYSTEMS MAGAZINE

MARCH 2020



IEEE - Aerospace and Electronic Systems - March 2020

Table of Contents for the Digital Edition of IEEE - Aerospace and Electronic Systems - March 2020

Contents
IEEE - Aerospace and Electronic Systems - March 2020 - Cover1
IEEE - Aerospace and Electronic Systems - March 2020 - Cover2
IEEE - Aerospace and Electronic Systems - March 2020 - Contents
IEEE - Aerospace and Electronic Systems - March 2020 - 2
IEEE - Aerospace and Electronic Systems - March 2020 - 3
IEEE - Aerospace and Electronic Systems - March 2020 - 4
IEEE - Aerospace and Electronic Systems - March 2020 - 5
IEEE - Aerospace and Electronic Systems - March 2020 - 6
IEEE - Aerospace and Electronic Systems - March 2020 - 7
IEEE - Aerospace and Electronic Systems - March 2020 - 8
IEEE - Aerospace and Electronic Systems - March 2020 - 9
IEEE - Aerospace and Electronic Systems - March 2020 - 10
IEEE - Aerospace and Electronic Systems - March 2020 - 11
IEEE - Aerospace and Electronic Systems - March 2020 - 12
IEEE - Aerospace and Electronic Systems - March 2020 - 13
IEEE - Aerospace and Electronic Systems - March 2020 - 14
IEEE - Aerospace and Electronic Systems - March 2020 - 15
IEEE - Aerospace and Electronic Systems - March 2020 - 16
IEEE - Aerospace and Electronic Systems - March 2020 - 17
IEEE - Aerospace and Electronic Systems - March 2020 - 18
IEEE - Aerospace and Electronic Systems - March 2020 - 19
IEEE - Aerospace and Electronic Systems - March 2020 - 20
IEEE - Aerospace and Electronic Systems - March 2020 - 21
IEEE - Aerospace and Electronic Systems - March 2020 - 22
IEEE - Aerospace and Electronic Systems - March 2020 - 23
IEEE - Aerospace and Electronic Systems - March 2020 - 24
IEEE - Aerospace and Electronic Systems - March 2020 - 25
IEEE - Aerospace and Electronic Systems - March 2020 - 26
IEEE - Aerospace and Electronic Systems - March 2020 - 27
IEEE - Aerospace and Electronic Systems - March 2020 - 28
IEEE - Aerospace and Electronic Systems - March 2020 - 29
IEEE - Aerospace and Electronic Systems - March 2020 - 30
IEEE - Aerospace and Electronic Systems - March 2020 - 31
IEEE - Aerospace and Electronic Systems - March 2020 - 32
IEEE - Aerospace and Electronic Systems - March 2020 - 33
IEEE - Aerospace and Electronic Systems - March 2020 - 34
IEEE - Aerospace and Electronic Systems - March 2020 - 35
IEEE - Aerospace and Electronic Systems - March 2020 - 36
IEEE - Aerospace and Electronic Systems - March 2020 - 37
IEEE - Aerospace and Electronic Systems - March 2020 - 38
IEEE - Aerospace and Electronic Systems - March 2020 - 39
IEEE - Aerospace and Electronic Systems - March 2020 - 40
IEEE - Aerospace and Electronic Systems - March 2020 - 41
IEEE - Aerospace and Electronic Systems - March 2020 - 42
IEEE - Aerospace and Electronic Systems - March 2020 - 43
IEEE - Aerospace and Electronic Systems - March 2020 - 44
IEEE - Aerospace and Electronic Systems - March 2020 - 45
IEEE - Aerospace and Electronic Systems - March 2020 - 46
IEEE - Aerospace and Electronic Systems - March 2020 - 47
IEEE - Aerospace and Electronic Systems - March 2020 - 48
IEEE - Aerospace and Electronic Systems - March 2020 - 49
IEEE - Aerospace and Electronic Systems - March 2020 - 50
IEEE - Aerospace and Electronic Systems - March 2020 - 51
IEEE - Aerospace and Electronic Systems - March 2020 - 52
IEEE - Aerospace and Electronic Systems - March 2020 - 53
IEEE - Aerospace and Electronic Systems - March 2020 - 54
IEEE - Aerospace and Electronic Systems - March 2020 - 55
IEEE - Aerospace and Electronic Systems - March 2020 - 56
IEEE - Aerospace and Electronic Systems - March 2020 - 57
IEEE - Aerospace and Electronic Systems - March 2020 - 58
IEEE - Aerospace and Electronic Systems - March 2020 - 59
IEEE - Aerospace and Electronic Systems - March 2020 - 60
IEEE - Aerospace and Electronic Systems - March 2020 - 61
IEEE - Aerospace and Electronic Systems - March 2020 - 62
IEEE - Aerospace and Electronic Systems - March 2020 - 63
IEEE - Aerospace and Electronic Systems - March 2020 - 64
IEEE - Aerospace and Electronic Systems - March 2020 - 65
IEEE - Aerospace and Electronic Systems - March 2020 - 66
IEEE - Aerospace and Electronic Systems - March 2020 - 67
IEEE - Aerospace and Electronic Systems - March 2020 - 68
IEEE - Aerospace and Electronic Systems - March 2020 - 69
IEEE - Aerospace and Electronic Systems - March 2020 - 70
IEEE - Aerospace and Electronic Systems - March 2020 - 71
IEEE - Aerospace and Electronic Systems - March 2020 - 72
IEEE - Aerospace and Electronic Systems - March 2020 - 73
IEEE - Aerospace and Electronic Systems - March 2020 - 74
IEEE - Aerospace and Electronic Systems - March 2020 - 75
IEEE - Aerospace and Electronic Systems - March 2020 - 76
IEEE - Aerospace and Electronic Systems - March 2020 - 77
IEEE - Aerospace and Electronic Systems - March 2020 - 78
IEEE - Aerospace and Electronic Systems - March 2020 - 79
IEEE - Aerospace and Electronic Systems - March 2020 - 80
IEEE - Aerospace and Electronic Systems - March 2020 - Cover3
IEEE - Aerospace and Electronic Systems - March 2020 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2022_tutorial
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2021_tutorials
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2019partII
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2018
https://www.nxtbookmedia.com