IEEE - Aerospace and Electronic Systems - March 2021 - 42
An Introduction to Practical Quantum Key Distribution
been some preliminary tests of GEO systems [110]. Additionally, there has been recent work in showing the feasibility of medium earth orbit (MEO) QKD, where it has
been shown that QKD can be conducted with satellites situated in orbits of 7000 km [111], [112]. MEO is less lossy
than GEO, as one might except, while also being more
reliably available than LEO.
The simplest forms of satellite-based QKD have
ground stations each independently conducting QKD protocols with the satellite to establish keys with it [109]. If a
pair of ground stations wish to establish a key between
themselves, they notify the satellite which can securely
communicate a key with each of them individually. For
example, if stations A and B each have communicated
keys Ka and Kb with the satellite, respectively, then the
satellite broadcasts to each station (publicly over an
authenticated but insecure channel) Ka È Kb , allowing A
to recover Kb and B to recover Ka (anyone listening to
Ka È Kb learns neither). In this case, the satellite is acting
as a trusted node.
Trusted node networks [113], [114] are a way to
bridge two quantum end-points allowing for increased distances (especially in fiber links), or for key-establishment
between two parties who do not have current line-of-sight
(for instance, in the satellite case). A trusted node T operates the same protocol as an end-user, establishing two
separate keys with A and B. Call these keys kAT (between
A and T ) and kTB (between trusted node T and user B).
The trusted node then typically broadcasts the bit-string
kAT È kTB (that is, the bit-wise XOR of the strings). This
allows A to compute kTB (which B already knows) thus
giving both parties a shared key. The broadcast of kAT È
kTB does not give an adversary additional information on
kTB (since kAT , being a secret key, is uniformly random
and independent of any adversary's information). The disadvantage, of course, is that T must be trusted (and
secured from outside hacking) as this entity holds the
secret key used by the users.
To agree on these keys, one may choose between
three main link types: uplink, downlink, and retro-reflector simulated downlink. In uplink configurations, a
source at the ground station transmits the quantum states
to a receiver located aboard the satellite, while in downlink configurations the roles are reversed, with the satellite transmitting the states to the ground station. Uplinks,
at the cost of having their detectors be at risk of irradiation from cosmic rays, have the advantage of alleviating
the need to locate a moving quantum signal at, a potentially complicated task, while downlinks suffer fewer
losses than uplinks [115]. Downlinks are the commonly
recommended configuration for satellite QKD, and currently the only demonstrated configuration [116]. A third
possibility is the use of retro-reflectors along with an
uplink to simulate a downlink configuration [117]. In this
scenario, both the source and the receiver are located at
42
the ground station. The ground station transmits a signal
to the retro-reflector aboard the satellite where the signal
is modulated and reflected back to the receiver, thus simulating a downlink without needing to place a transmitter
on the satellite.
A common issue with satellite QKD has been that
their operation has been limited to the night, when the
apparatus are not prohibited by daylight. Recent
work [118], [119], aided by the use of telecommunications
wavelengths and more advanced detectors using integrated photonics [119]-[121], has shown that it is feasible
to achieve long distance quantum communication in both
urban and nonurban environments while experiencing loss
that is comparable to the loss experienced in LEO
systems.
Finally, as a futuristic goal, these kinds of configurations can be combined and chained as parts of larger networks [122]. Satellites can conduct QKD protocols
between themselves to transmit keys from more distant
regions of the network. A large network may consist of
fiber linked metropolitan networks communicating with
both LEO and GEO satellites, those satellites themselves
also communicating with other metropolitan linked networks and other LEO and GEO satellites ultimately resulting in much larger, QKD secured networks than the ones
currently in place. Of course, this is a long-term goal.
LOSS AND KEY-RATE
The loss of a quantum channel, as it turns out, is a fundamental limitation on key-generation rates. Regardless of
the protocol, and even augmented with unlimited two-way
classical communication, it was shown in [123] and[124]
that the secure key generation rate of any QKD protocol is
upper-bounded by a function only the loss in the channel.
If h is the transmittance of the channel, then the so-called
PLOB bound (after the authors of [124] shows the keyrate is proportional to Àlog 2 ð1 À hÞ. This rate may be
overcome using quantum repeater networks, or, more feasible today, through the use of the newly developed TwinField QKD (TF-QKD) protocols [102], [103]. The keyrate for TF-QKD protocols generally scale according to
the square-root of h in theory. In practice, recent experimental results have already broken the PLOB bound [125]
leading to exciting possibilities in scaling QKD infrastructure without necessarily requiring advanced quantum
repeaters.
INTEGRATING QKD TECHNOLOGY
While much research has been done in developing the theory and practice of QKD communication between two
points, there has also been much work done in actually
integrating this technology into current, or future,
IEEE A&E SYSTEMS MAGAZINE
MARCH 2021
IEEE - Aerospace and Electronic Systems - March 2021
Table of Contents for the Digital Edition of IEEE - Aerospace and Electronic Systems - March 2021
Contents
IEEE - Aerospace and Electronic Systems - March 2021 - Contents
IEEE - Aerospace and Electronic Systems - March 2021 - Cover2
IEEE - Aerospace and Electronic Systems - March 2021 - 1
IEEE - Aerospace and Electronic Systems - March 2021 - 2
IEEE - Aerospace and Electronic Systems - March 2021 - 3
IEEE - Aerospace and Electronic Systems - March 2021 - 4
IEEE - Aerospace and Electronic Systems - March 2021 - 5
IEEE - Aerospace and Electronic Systems - March 2021 - 6
IEEE - Aerospace and Electronic Systems - March 2021 - 7
IEEE - Aerospace and Electronic Systems - March 2021 - 8
IEEE - Aerospace and Electronic Systems - March 2021 - 9
IEEE - Aerospace and Electronic Systems - March 2021 - 10
IEEE - Aerospace and Electronic Systems - March 2021 - 11
IEEE - Aerospace and Electronic Systems - March 2021 - 12
IEEE - Aerospace and Electronic Systems - March 2021 - 13
IEEE - Aerospace and Electronic Systems - March 2021 - 14
IEEE - Aerospace and Electronic Systems - March 2021 - 15
IEEE - Aerospace and Electronic Systems - March 2021 - 16
IEEE - Aerospace and Electronic Systems - March 2021 - 17
IEEE - Aerospace and Electronic Systems - March 2021 - 18
IEEE - Aerospace and Electronic Systems - March 2021 - 19
IEEE - Aerospace and Electronic Systems - March 2021 - 20
IEEE - Aerospace and Electronic Systems - March 2021 - 21
IEEE - Aerospace and Electronic Systems - March 2021 - 22
IEEE - Aerospace and Electronic Systems - March 2021 - 23
IEEE - Aerospace and Electronic Systems - March 2021 - 24
IEEE - Aerospace and Electronic Systems - March 2021 - 25
IEEE - Aerospace and Electronic Systems - March 2021 - 26
IEEE - Aerospace and Electronic Systems - March 2021 - 27
IEEE - Aerospace and Electronic Systems - March 2021 - 28
IEEE - Aerospace and Electronic Systems - March 2021 - 29
IEEE - Aerospace and Electronic Systems - March 2021 - 30
IEEE - Aerospace and Electronic Systems - March 2021 - 31
IEEE - Aerospace and Electronic Systems - March 2021 - 32
IEEE - Aerospace and Electronic Systems - March 2021 - 33
IEEE - Aerospace and Electronic Systems - March 2021 - 34
IEEE - Aerospace and Electronic Systems - March 2021 - 35
IEEE - Aerospace and Electronic Systems - March 2021 - 36
IEEE - Aerospace and Electronic Systems - March 2021 - 37
IEEE - Aerospace and Electronic Systems - March 2021 - 38
IEEE - Aerospace and Electronic Systems - March 2021 - 39
IEEE - Aerospace and Electronic Systems - March 2021 - 40
IEEE - Aerospace and Electronic Systems - March 2021 - 41
IEEE - Aerospace and Electronic Systems - March 2021 - 42
IEEE - Aerospace and Electronic Systems - March 2021 - 43
IEEE - Aerospace and Electronic Systems - March 2021 - 44
IEEE - Aerospace and Electronic Systems - March 2021 - 45
IEEE - Aerospace and Electronic Systems - March 2021 - 46
IEEE - Aerospace and Electronic Systems - March 2021 - 47
IEEE - Aerospace and Electronic Systems - March 2021 - 48
IEEE - Aerospace and Electronic Systems - March 2021 - 49
IEEE - Aerospace and Electronic Systems - March 2021 - 50
IEEE - Aerospace and Electronic Systems - March 2021 - 51
IEEE - Aerospace and Electronic Systems - March 2021 - 52
IEEE - Aerospace and Electronic Systems - March 2021 - 53
IEEE - Aerospace and Electronic Systems - March 2021 - 54
IEEE - Aerospace and Electronic Systems - March 2021 - 55
IEEE - Aerospace and Electronic Systems - March 2021 - 56
IEEE - Aerospace and Electronic Systems - March 2021 - 57
IEEE - Aerospace and Electronic Systems - March 2021 - 58
IEEE - Aerospace and Electronic Systems - March 2021 - 59
IEEE - Aerospace and Electronic Systems - March 2021 - 60
IEEE - Aerospace and Electronic Systems - March 2021 - 61
IEEE - Aerospace and Electronic Systems - March 2021 - 62
IEEE - Aerospace and Electronic Systems - March 2021 - 63
IEEE - Aerospace and Electronic Systems - March 2021 - 64
IEEE - Aerospace and Electronic Systems - March 2021 - 65
IEEE - Aerospace and Electronic Systems - March 2021 - 66
IEEE - Aerospace and Electronic Systems - March 2021 - 67
IEEE - Aerospace and Electronic Systems - March 2021 - 68
IEEE - Aerospace and Electronic Systems - March 2021 - 69
IEEE - Aerospace and Electronic Systems - March 2021 - 70
IEEE - Aerospace and Electronic Systems - March 2021 - 71
IEEE - Aerospace and Electronic Systems - March 2021 - 72
IEEE - Aerospace and Electronic Systems - March 2021 - 73
IEEE - Aerospace and Electronic Systems - March 2021 - 74
IEEE - Aerospace and Electronic Systems - March 2021 - 75
IEEE - Aerospace and Electronic Systems - March 2021 - 76
IEEE - Aerospace and Electronic Systems - March 2021 - 77
IEEE - Aerospace and Electronic Systems - March 2021 - 78
IEEE - Aerospace and Electronic Systems - March 2021 - 79
IEEE - Aerospace and Electronic Systems - March 2021 - 80
IEEE - Aerospace and Electronic Systems - March 2021 - 81
IEEE - Aerospace and Electronic Systems - March 2021 - 82
IEEE - Aerospace and Electronic Systems - March 2021 - 83
IEEE - Aerospace and Electronic Systems - March 2021 - 84
IEEE - Aerospace and Electronic Systems - March 2021 - 85
IEEE - Aerospace and Electronic Systems - March 2021 - 86
IEEE - Aerospace and Electronic Systems - March 2021 - 87
IEEE - Aerospace and Electronic Systems - March 2021 - 88
IEEE - Aerospace and Electronic Systems - March 2021 - 89
IEEE - Aerospace and Electronic Systems - March 2021 - 90
IEEE - Aerospace and Electronic Systems - March 2021 - 91
IEEE - Aerospace and Electronic Systems - March 2021 - 92
IEEE - Aerospace and Electronic Systems - March 2021 - 93
IEEE - Aerospace and Electronic Systems - March 2021 - 94
IEEE - Aerospace and Electronic Systems - March 2021 - 95
IEEE - Aerospace and Electronic Systems - March 2021 - 96
IEEE - Aerospace and Electronic Systems - March 2021 - Cover3
IEEE - Aerospace and Electronic Systems - March 2021 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2022_tutorial
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2021_tutorials
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2019partII
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2018
https://www.nxtbookmedia.com