IEEE - Aerospace and Electronic Systems - March 2021 - 89

IEEE AES Tutorials

COHERENT RADAR DETECTION IN COMPOUND-GAUSSIAN
CLUTTER: CLAIRVOYANT DETECTORS
K. JAMES SANGSTON
Sensors and Electromagnetic Applications Laboratory
Georgia Tech Research Institute
Smyrna, GA, USA
ALFONSO FARINA
Independent Consultant
Rome, Italy
This paper provides a historical and tutorial overview of
coherent radar target detection in compound-Gaussian
clutter and offers some new perspectives and avenues of
research in this challenging area. It begins with a brief
introduction that motivates the need to develop statistical
models of non-Gaussian clutter and then reviews some of
the physical ideas that led to modeling multivariate radar
clutter statistics by the compound-Gaussian model. With
this starting point, the paper then reviews a series of ideas
that have been developed to describe clairvoyant detectors
in such clutter. The term " clairvoyant " refers to the
assumption that the properties of the clutter are assumed
to be known. In a practical scenario, this assumption does
not hold and adaptive techniques are needed to estimate
clutter properties and implement the detector. Such techniques are guided however by the appropriate clairvoyant
detector structures and hence it is proper to start by studying these detectors. As part of this review, the paper offers
new ways of looking at this problem that suggest new
research topics. This review is limited to the problem of
clairvoyant detection in which the relevant properties of
the clutter are assumed to be known. Adaptive detection
in compound-Gaussian clutter will be the topic of a subsequent tutorial that the authors are preparing.

A SURVEY OF RADAR SYSTEMS FOR MEDICAL APPLICATIONS
STEFANO PISA
ERIKA PITTELLA
EMANUELE PIUZZI
Sapienza University of Rome
Rome, Italy

SENSE AND AVOID FOR UNMANNED AIRCRAFT SYSTEMS
GIANCARMINE FASANO
DOMENICO ACCARDO
ANTONIO MOCCIA
University of Naples " Federico II
Naples, Italy
DAVID MARONEY
The MITRE Corporation
McLean, VA, USA
Sense and avoid (SAA) represents one of the main roadblocks to the integration of unmanned aircraft systems
(UAS) operations by aviation authorities around the world.
This tutorial outlines and reviews the substantial breadth of
SAA architectures, technologies, and algorithms. Starting
from a discussion about what constitutes a UAS and how it
is different than manned aircraft, basic SAA definitions
and taxonomies are discussed. The SAA process is dissected into three fundamental tasks, defined as sensing,
detecting, and avoiding, which are discussed in detail. The
tutorial concludes with a summary of the regulatory and
technical issues that continue to challenge the progress on
SAA, as a key component of reliable UAS operation in civil
aviation authorities (CAAs) around the world.

TUTORIAL XI

A survey of radar systems used in the medical field is presented. First, medical applications of radars are described,
and some emerging research fields are highlighted. Then,
medical radars are analyzed in terms of block diagrams and
behavioral equations and some implementations are shown
as examples. A section is dedicated to the radiating
structures used in these radars. Finally, human safety and
environmental impact issues are addressed. The most investigated medical applications of radars are breast tumor diagnostics and remote monitoring of cardiorespiratory activity.
New fields of interest are physiological liquid detection, and
the monitoring of artery walls and vocal cord movements.
Among the various topologies, continuous wave (CW)
radars have been proven to yield the highest range resolution
MARCH 2021

that is limited only by the system noise while the resolution
of ultra wideband (UWB) and frequency modulated continuous wave (FMCW) radars is also related to the used frequency bandwidth. Concerning the maximum range, UWB
radars have the best performance due to their ability to operate in the presence of environmental clutter. As for the radiating structures, planar antennas are preferred for diagnostic
applications, due to their small dimensions and good matching when placed in contact with the human body. Radar systems for remote monitoring, instead, are designed by using
high gain antennas and taking into account the complex
radar cross section (RCS) of the body.

INTRODUCTORY VIEW OF ANOMALOUS CHANGE DETECTION
IN HYPERSPECTRAL IMAGES WITHIN A THEORETICAL
GAUSSIAN FRAMEWORK
NICOLA ACITO
MARCO DIANI
Accademia Navale
Livorno, Italy
GIOVANNI CORSINI
Universita di Pisa
Pisa, Italy
SALVATORE RESTA
Italian Navy
Exploitation of temporal series of hyperspectral images
is a relatively new discipline that has gained a lot of

IEEE A&E SYSTEMS MAGAZINE

89



IEEE - Aerospace and Electronic Systems - March 2021

Table of Contents for the Digital Edition of IEEE - Aerospace and Electronic Systems - March 2021

Contents
IEEE - Aerospace and Electronic Systems - March 2021 - Contents
IEEE - Aerospace and Electronic Systems - March 2021 - Cover2
IEEE - Aerospace and Electronic Systems - March 2021 - 1
IEEE - Aerospace and Electronic Systems - March 2021 - 2
IEEE - Aerospace and Electronic Systems - March 2021 - 3
IEEE - Aerospace and Electronic Systems - March 2021 - 4
IEEE - Aerospace and Electronic Systems - March 2021 - 5
IEEE - Aerospace and Electronic Systems - March 2021 - 6
IEEE - Aerospace and Electronic Systems - March 2021 - 7
IEEE - Aerospace and Electronic Systems - March 2021 - 8
IEEE - Aerospace and Electronic Systems - March 2021 - 9
IEEE - Aerospace and Electronic Systems - March 2021 - 10
IEEE - Aerospace and Electronic Systems - March 2021 - 11
IEEE - Aerospace and Electronic Systems - March 2021 - 12
IEEE - Aerospace and Electronic Systems - March 2021 - 13
IEEE - Aerospace and Electronic Systems - March 2021 - 14
IEEE - Aerospace and Electronic Systems - March 2021 - 15
IEEE - Aerospace and Electronic Systems - March 2021 - 16
IEEE - Aerospace and Electronic Systems - March 2021 - 17
IEEE - Aerospace and Electronic Systems - March 2021 - 18
IEEE - Aerospace and Electronic Systems - March 2021 - 19
IEEE - Aerospace and Electronic Systems - March 2021 - 20
IEEE - Aerospace and Electronic Systems - March 2021 - 21
IEEE - Aerospace and Electronic Systems - March 2021 - 22
IEEE - Aerospace and Electronic Systems - March 2021 - 23
IEEE - Aerospace and Electronic Systems - March 2021 - 24
IEEE - Aerospace and Electronic Systems - March 2021 - 25
IEEE - Aerospace and Electronic Systems - March 2021 - 26
IEEE - Aerospace and Electronic Systems - March 2021 - 27
IEEE - Aerospace and Electronic Systems - March 2021 - 28
IEEE - Aerospace and Electronic Systems - March 2021 - 29
IEEE - Aerospace and Electronic Systems - March 2021 - 30
IEEE - Aerospace and Electronic Systems - March 2021 - 31
IEEE - Aerospace and Electronic Systems - March 2021 - 32
IEEE - Aerospace and Electronic Systems - March 2021 - 33
IEEE - Aerospace and Electronic Systems - March 2021 - 34
IEEE - Aerospace and Electronic Systems - March 2021 - 35
IEEE - Aerospace and Electronic Systems - March 2021 - 36
IEEE - Aerospace and Electronic Systems - March 2021 - 37
IEEE - Aerospace and Electronic Systems - March 2021 - 38
IEEE - Aerospace and Electronic Systems - March 2021 - 39
IEEE - Aerospace and Electronic Systems - March 2021 - 40
IEEE - Aerospace and Electronic Systems - March 2021 - 41
IEEE - Aerospace and Electronic Systems - March 2021 - 42
IEEE - Aerospace and Electronic Systems - March 2021 - 43
IEEE - Aerospace and Electronic Systems - March 2021 - 44
IEEE - Aerospace and Electronic Systems - March 2021 - 45
IEEE - Aerospace and Electronic Systems - March 2021 - 46
IEEE - Aerospace and Electronic Systems - March 2021 - 47
IEEE - Aerospace and Electronic Systems - March 2021 - 48
IEEE - Aerospace and Electronic Systems - March 2021 - 49
IEEE - Aerospace and Electronic Systems - March 2021 - 50
IEEE - Aerospace and Electronic Systems - March 2021 - 51
IEEE - Aerospace and Electronic Systems - March 2021 - 52
IEEE - Aerospace and Electronic Systems - March 2021 - 53
IEEE - Aerospace and Electronic Systems - March 2021 - 54
IEEE - Aerospace and Electronic Systems - March 2021 - 55
IEEE - Aerospace and Electronic Systems - March 2021 - 56
IEEE - Aerospace and Electronic Systems - March 2021 - 57
IEEE - Aerospace and Electronic Systems - March 2021 - 58
IEEE - Aerospace and Electronic Systems - March 2021 - 59
IEEE - Aerospace and Electronic Systems - March 2021 - 60
IEEE - Aerospace and Electronic Systems - March 2021 - 61
IEEE - Aerospace and Electronic Systems - March 2021 - 62
IEEE - Aerospace and Electronic Systems - March 2021 - 63
IEEE - Aerospace and Electronic Systems - March 2021 - 64
IEEE - Aerospace and Electronic Systems - March 2021 - 65
IEEE - Aerospace and Electronic Systems - March 2021 - 66
IEEE - Aerospace and Electronic Systems - March 2021 - 67
IEEE - Aerospace and Electronic Systems - March 2021 - 68
IEEE - Aerospace and Electronic Systems - March 2021 - 69
IEEE - Aerospace and Electronic Systems - March 2021 - 70
IEEE - Aerospace and Electronic Systems - March 2021 - 71
IEEE - Aerospace and Electronic Systems - March 2021 - 72
IEEE - Aerospace and Electronic Systems - March 2021 - 73
IEEE - Aerospace and Electronic Systems - March 2021 - 74
IEEE - Aerospace and Electronic Systems - March 2021 - 75
IEEE - Aerospace and Electronic Systems - March 2021 - 76
IEEE - Aerospace and Electronic Systems - March 2021 - 77
IEEE - Aerospace and Electronic Systems - March 2021 - 78
IEEE - Aerospace and Electronic Systems - March 2021 - 79
IEEE - Aerospace and Electronic Systems - March 2021 - 80
IEEE - Aerospace and Electronic Systems - March 2021 - 81
IEEE - Aerospace and Electronic Systems - March 2021 - 82
IEEE - Aerospace and Electronic Systems - March 2021 - 83
IEEE - Aerospace and Electronic Systems - March 2021 - 84
IEEE - Aerospace and Electronic Systems - March 2021 - 85
IEEE - Aerospace and Electronic Systems - March 2021 - 86
IEEE - Aerospace and Electronic Systems - March 2021 - 87
IEEE - Aerospace and Electronic Systems - March 2021 - 88
IEEE - Aerospace and Electronic Systems - March 2021 - 89
IEEE - Aerospace and Electronic Systems - March 2021 - 90
IEEE - Aerospace and Electronic Systems - March 2021 - 91
IEEE - Aerospace and Electronic Systems - March 2021 - 92
IEEE - Aerospace and Electronic Systems - March 2021 - 93
IEEE - Aerospace and Electronic Systems - March 2021 - 94
IEEE - Aerospace and Electronic Systems - March 2021 - 95
IEEE - Aerospace and Electronic Systems - March 2021 - 96
IEEE - Aerospace and Electronic Systems - March 2021 - Cover3
IEEE - Aerospace and Electronic Systems - March 2021 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2022_tutorial
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2021_tutorials
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2019partII
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2018
https://www.nxtbookmedia.com