Aerospace and Electronic Systems - May 2019 - 3

AN EMERGENCY MITIGATION SYSTEM FOR SAFER LUNAR SURFACE EXPLORATION
This paper presents the conceptual design and analysis of a rover-based mission emergency mitigation system intended to
increase the range, scientific capability, and safety of manned lunar surface exploration while only requiring a modest increase
in capability over the Apollo mission designs. The system is intended to enable the safe return of two astronauts back to the
lunar operational base in the event of two types of failures: rover failures and medical emergencies and/or suit failures. The
proposed system increases fault tolerance with the addition of an emergency inflatable structure and an environmental control
and life support system on the lunar rover to mitigate a wide range of suit and rover failures. The environmental control and
life support system on the rover can be connected to the emergency inflatable to provide a habitable environment in the event
of suit failure or connected to the astronaut's portable life support system to provide additional consumables in the event of
rover failure. The mass and volume analyses of each subsystem are integrated to generate a total system mass of 26.91 kg and
volume of 86.10 L, both of which can be accommodated on the Apollo Lunar Roving Vehicle design without requiring
additional carrying capacity.

POWER LINE DETECTION FOR AIRCRAFT SAFETY BASED ON IMAGE PROCESSING TECHNIQUES:
ADVANCES AND RECOMMENDATIONS
Power line is a matter of concern for low-flying aircraft safety. A lot of power line-strike accidents, leading to death or injury
of pilots, have been reported. Therefore, automatic power line detection (PLD) is essential for flight security of low-altitude
aircraft. Nevertheless, PLD is a challenging task. Some research works utilizing radar techniques to detect power lines have
been reported. However, radar-based approaches suffer from high false alarm rate which makes pilots confused and
distracted. In recent years, with the continuously increasing resolution of digital cameras, it is feasible to detect power lines
from aerial images and many studies have been presented. With the aim of providing a good starting point for researchers
interested in PLD, this paper gives an extensive review on past studies on PLD, focusing on image processing-based
techniques. This paper also presents an outlook for future prospects of PLD, pointing out that Artificial Intelligence, image
fusion, and multimodal sensor fusion will help to perform PLD better.

REVIEW OF HIGH THROUGHPUT SATELLITES: MARKET DISRUPTIONS, AFFORDABILITY-THROUGHPUT
MAP, AND THE COST PER BIT/SECOND DECISION TREE
The objectives of this work are to provide a review of High Throughput Satellites (HTS) integrating market and technical
considerations, and to examine their key metrics and trade-offs including their cost per bit/second and positioning in the
affordabilityperformance map. We first introduce HTS and their enabling technologies, and we examine the different markets
they serve. HTS are the proverbial wave of creative disruption in the space industry. We identify the likely disruptions for
satellite operators and manufacturers, for example increased customer churn, market cannibalization, lease price erosion, and
lower fill rates. A marked slowdown in momentum for yearly GEO satellite orders is also anticipated. Second, we introduce
the affordability-throughput map for satellite connectivity and examine some current satellites within this space. The map
shows a significant gap in affordability ($/Gbps) and throughput between traditional wide beam satellites and HTS. Also
shown in this map is the fact that the DoD leases the most expensive and lowest performing satellite connectivity. We develop
a novel cost per bit per second model for GEO HTS based on historical cost and throughput data. The results show a clear
power relationship between affordability and satellite throughput. Substantial economies of scales are found, and the "knee"
in the affordability curve occurs around 100 Gbps. Third, we develop a cost per bit/s decision tree as a tool to provide an
integrated perspective on the technical levers that drive this key metric. We examine each lever and tradeoffs involved
(between spectral efficiency, order of modulation, number of beams, and RF power on board the spacecraft as well as its
EIRP). We propose that this integrated perspective can help guide the development of a coherent R&D portfolio in support of
HTS. A value analysis of HTS is proposed in a companion article.

MAY 2019

IEEE A&E SYSTEMS MAGAZINE

3



Aerospace and Electronic Systems - May 2019

Table of Contents for the Digital Edition of Aerospace and Electronic Systems - May 2019

Contents
Aerospace and Electronic Systems - May 2019 - Cover1
Aerospace and Electronic Systems - May 2019 - Cover2
Aerospace and Electronic Systems - May 2019 - Contents
Aerospace and Electronic Systems - May 2019 - 2
Aerospace and Electronic Systems - May 2019 - 3
Aerospace and Electronic Systems - May 2019 - 4
Aerospace and Electronic Systems - May 2019 - 5
Aerospace and Electronic Systems - May 2019 - 6
Aerospace and Electronic Systems - May 2019 - 7
Aerospace and Electronic Systems - May 2019 - 8
Aerospace and Electronic Systems - May 2019 - 9
Aerospace and Electronic Systems - May 2019 - 10
Aerospace and Electronic Systems - May 2019 - 11
Aerospace and Electronic Systems - May 2019 - 12
Aerospace and Electronic Systems - May 2019 - 13
Aerospace and Electronic Systems - May 2019 - 14
Aerospace and Electronic Systems - May 2019 - 15
Aerospace and Electronic Systems - May 2019 - 16
Aerospace and Electronic Systems - May 2019 - 17
Aerospace and Electronic Systems - May 2019 - 18
Aerospace and Electronic Systems - May 2019 - 19
Aerospace and Electronic Systems - May 2019 - 20
Aerospace and Electronic Systems - May 2019 - 21
Aerospace and Electronic Systems - May 2019 - 22
Aerospace and Electronic Systems - May 2019 - 23
Aerospace and Electronic Systems - May 2019 - 24
Aerospace and Electronic Systems - May 2019 - 25
Aerospace and Electronic Systems - May 2019 - 26
Aerospace and Electronic Systems - May 2019 - 27
Aerospace and Electronic Systems - May 2019 - 28
Aerospace and Electronic Systems - May 2019 - 29
Aerospace and Electronic Systems - May 2019 - 30
Aerospace and Electronic Systems - May 2019 - 31
Aerospace and Electronic Systems - May 2019 - 32
Aerospace and Electronic Systems - May 2019 - 33
Aerospace and Electronic Systems - May 2019 - 34
Aerospace and Electronic Systems - May 2019 - 35
Aerospace and Electronic Systems - May 2019 - 36
Aerospace and Electronic Systems - May 2019 - 37
Aerospace and Electronic Systems - May 2019 - 38
Aerospace and Electronic Systems - May 2019 - 39
Aerospace and Electronic Systems - May 2019 - 40
Aerospace and Electronic Systems - May 2019 - 41
Aerospace and Electronic Systems - May 2019 - 42
Aerospace and Electronic Systems - May 2019 - 43
Aerospace and Electronic Systems - May 2019 - 44
Aerospace and Electronic Systems - May 2019 - 45
Aerospace and Electronic Systems - May 2019 - 46
Aerospace and Electronic Systems - May 2019 - 47
Aerospace and Electronic Systems - May 2019 - 48
Aerospace and Electronic Systems - May 2019 - 49
Aerospace and Electronic Systems - May 2019 - 50
Aerospace and Electronic Systems - May 2019 - 51
Aerospace and Electronic Systems - May 2019 - 52
Aerospace and Electronic Systems - May 2019 - 53
Aerospace and Electronic Systems - May 2019 - 54
Aerospace and Electronic Systems - May 2019 - 55
Aerospace and Electronic Systems - May 2019 - 56
Aerospace and Electronic Systems - May 2019 - 57
Aerospace and Electronic Systems - May 2019 - 58
Aerospace and Electronic Systems - May 2019 - 59
Aerospace and Electronic Systems - May 2019 - 60
Aerospace and Electronic Systems - May 2019 - 61
Aerospace and Electronic Systems - May 2019 - 62
Aerospace and Electronic Systems - May 2019 - 63
Aerospace and Electronic Systems - May 2019 - 64
Aerospace and Electronic Systems - May 2019 - 65
Aerospace and Electronic Systems - May 2019 - 66
Aerospace and Electronic Systems - May 2019 - 67
Aerospace and Electronic Systems - May 2019 - 68
Aerospace and Electronic Systems - May 2019 - 69
Aerospace and Electronic Systems - May 2019 - 70
Aerospace and Electronic Systems - May 2019 - 71
Aerospace and Electronic Systems - May 2019 - 72
Aerospace and Electronic Systems - May 2019 - 73
Aerospace and Electronic Systems - May 2019 - 74
Aerospace and Electronic Systems - May 2019 - 75
Aerospace and Electronic Systems - May 2019 - 76
Aerospace and Electronic Systems - May 2019 - 77
Aerospace and Electronic Systems - May 2019 - 78
Aerospace and Electronic Systems - May 2019 - 79
Aerospace and Electronic Systems - May 2019 - 80
Aerospace and Electronic Systems - May 2019 - 81
Aerospace and Electronic Systems - May 2019 - 82
Aerospace and Electronic Systems - May 2019 - 83
Aerospace and Electronic Systems - May 2019 - 84
Aerospace and Electronic Systems - May 2019 - 85
Aerospace and Electronic Systems - May 2019 - 86
Aerospace and Electronic Systems - May 2019 - 87
Aerospace and Electronic Systems - May 2019 - 88
Aerospace and Electronic Systems - May 2019 - Cover3
Aerospace and Electronic Systems - May 2019 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2022_tutorial
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2021_tutorials
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2019partII
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2018
https://www.nxtbookmedia.com