IEEE - Aerospace and Electronic Systems - September 2023 - 7
Ksi ˛e_zyk et al.
a third user perspective. In this article, the focus is put on
those downlink physical signals and channels that are not
user specific. Then, downlink channel reference signals
will be described.
As an introduction to the detailed analysis of 5G signals'
and physical channels' morphology given in the following,
a rough description of their usage during UE
access to the 5G network is presented in Table 1.
NR RG AND NUMEROLOGY
Figure 2.
General signal processing diagram for radar using a 5G network
as a source of illumination.
but operating in option 4, at least two receiving antennas
have to be provided.
As mentioned, the processing in both types of radar,
active and passive, is very similar. In passive radars, the
signal can be additionally synchronized allowing for the
increase of the SNR at the output of the detector, but this
operation is not mandatory. The range compression is performed
according to matched filtering (1) or correlation (2)
for active and passive radar, respectively. The next steps
rely on clutter removal, velocity estimation, target detection,
and tracking. These steps are close in passive and
active systems and operate on the base of the same
principles.
5G SIGNAL MORPHOLOGY
A passive radar approach relies on the concept of utilizing
an existing signal produced by ongoing communication
between a transmitter and a receiver. In the 5G NR cellular
network, these devices correspond to the BTS and UE.
A key requirement is to identify the signals that are useful
in active and passive location techniques presented in
Figure 1. The 5G NR waveform is constructed from several
physical channels and signals. Each of them has a different
purpose, occurs in different places in the time-
frequency (TF) grid, and is coded in a different way. It is
important to identify the position of those signals in the
TF resource grid (RG) and, if possible, decode them from
SEPTEMBER 2023
Filtered orthogonal frequency division multiplex (FOFDM)
was chosen as a 5G NR access scheme. Similar to
the 4G long term evolution (LTE) deployment, all 5G
physical channels and signals in both uplink and downlink
form an RG on which particular symbols are placed in the
frequency and time domain. The main differences
between NR and LTE are i) scalable (so-called) numerology,
identified by parameter m ¼f0; 1; 2; ...g, and ii)
max carrier bandwidth. Parameter m directly identifies
subcarries spacing (SCS), symbol and cyclic prefix duration,
and slot length. Possible values of all options for general
parameters are presented in Table 2.
Table 1.
Some 5G Physical Channels/Signals Which Are
Important for Radar Purposes
Analyzed Receiving/
Decoding
SSB
PSS
SSS
DM-RS and
PBCH
MIB from
PBCH
Goal
Frequency and
symbol synchron
Physical cell
identification
Frame synchro,
spacial filter selection
Finding PDCCH
configuration
PDCCH PDCCH Obtaining info about
SIB1 position
PDSCH PDSCH Obtaining SIB1, i.e.,
min system info
CSI-RS
CSI-RS
Finding 5G channel
characteristics
1. PSS: Primary synchronization signal. 2. SSS: Secondary synchronization
signal. 3. DM-RS: Demodulation reference signal.
4. PBCH: Physical broadcast channel. 5. SSB = 1+2+3+4: Synchronization
signal block. 6. MIB = Master information block
from PBCH. 7. PDCCH: Physical downlink control channel.
8. PDSCH: Physical downlink shared/data channel. 9. SIB1: System
information block type 1from PDSCH. 10. CSI-RS: Channel
state information reference signal.
IEEE A&E SYSTEMS MAGAZINE
7
IEEE - Aerospace and Electronic Systems - September 2023
Table of Contents for the Digital Edition of IEEE - Aerospace and Electronic Systems - September 2023
Contents
IEEE - Aerospace and Electronic Systems - September 2023 - Cover1
IEEE - Aerospace and Electronic Systems - September 2023 - Cover2
IEEE - Aerospace and Electronic Systems - September 2023 - Contents
IEEE - Aerospace and Electronic Systems - September 2023 - 2
IEEE - Aerospace and Electronic Systems - September 2023 - 3
IEEE - Aerospace and Electronic Systems - September 2023 - 4
IEEE - Aerospace and Electronic Systems - September 2023 - 5
IEEE - Aerospace and Electronic Systems - September 2023 - 6
IEEE - Aerospace and Electronic Systems - September 2023 - 7
IEEE - Aerospace and Electronic Systems - September 2023 - 8
IEEE - Aerospace and Electronic Systems - September 2023 - 9
IEEE - Aerospace and Electronic Systems - September 2023 - 10
IEEE - Aerospace and Electronic Systems - September 2023 - 11
IEEE - Aerospace and Electronic Systems - September 2023 - 12
IEEE - Aerospace and Electronic Systems - September 2023 - 13
IEEE - Aerospace and Electronic Systems - September 2023 - 14
IEEE - Aerospace and Electronic Systems - September 2023 - 15
IEEE - Aerospace and Electronic Systems - September 2023 - 16
IEEE - Aerospace and Electronic Systems - September 2023 - 17
IEEE - Aerospace and Electronic Systems - September 2023 - 18
IEEE - Aerospace and Electronic Systems - September 2023 - 19
IEEE - Aerospace and Electronic Systems - September 2023 - 20
IEEE - Aerospace and Electronic Systems - September 2023 - 21
IEEE - Aerospace and Electronic Systems - September 2023 - 22
IEEE - Aerospace and Electronic Systems - September 2023 - 23
IEEE - Aerospace and Electronic Systems - September 2023 - 24
IEEE - Aerospace and Electronic Systems - September 2023 - 25
IEEE - Aerospace and Electronic Systems - September 2023 - 26
IEEE - Aerospace and Electronic Systems - September 2023 - 27
IEEE - Aerospace and Electronic Systems - September 2023 - 28
IEEE - Aerospace and Electronic Systems - September 2023 - 29
IEEE - Aerospace and Electronic Systems - September 2023 - 30
IEEE - Aerospace and Electronic Systems - September 2023 - 31
IEEE - Aerospace and Electronic Systems - September 2023 - 32
IEEE - Aerospace and Electronic Systems - September 2023 - 33
IEEE - Aerospace and Electronic Systems - September 2023 - 34
IEEE - Aerospace and Electronic Systems - September 2023 - 35
IEEE - Aerospace and Electronic Systems - September 2023 - 36
IEEE - Aerospace and Electronic Systems - September 2023 - 37
IEEE - Aerospace and Electronic Systems - September 2023 - 38
IEEE - Aerospace and Electronic Systems - September 2023 - 39
IEEE - Aerospace and Electronic Systems - September 2023 - 40
IEEE - Aerospace and Electronic Systems - September 2023 - 41
IEEE - Aerospace and Electronic Systems - September 2023 - 42
IEEE - Aerospace and Electronic Systems - September 2023 - 43
IEEE - Aerospace and Electronic Systems - September 2023 - 44
IEEE - Aerospace and Electronic Systems - September 2023 - 45
IEEE - Aerospace and Electronic Systems - September 2023 - 46
IEEE - Aerospace and Electronic Systems - September 2023 - 47
IEEE - Aerospace and Electronic Systems - September 2023 - 48
IEEE - Aerospace and Electronic Systems - September 2023 - 49
IEEE - Aerospace and Electronic Systems - September 2023 - 50
IEEE - Aerospace and Electronic Systems - September 2023 - 51
IEEE - Aerospace and Electronic Systems - September 2023 - 52
IEEE - Aerospace and Electronic Systems - September 2023 - 53
IEEE - Aerospace and Electronic Systems - September 2023 - 54
IEEE - Aerospace and Electronic Systems - September 2023 - 55
IEEE - Aerospace and Electronic Systems - September 2023 - 56
IEEE - Aerospace and Electronic Systems - September 2023 - 57
IEEE - Aerospace and Electronic Systems - September 2023 - 58
IEEE - Aerospace and Electronic Systems - September 2023 - 59
IEEE - Aerospace and Electronic Systems - September 2023 - 60
IEEE - Aerospace and Electronic Systems - September 2023 - 61
IEEE - Aerospace and Electronic Systems - September 2023 - 62
IEEE - Aerospace and Electronic Systems - September 2023 - 63
IEEE - Aerospace and Electronic Systems - September 2023 - 64
IEEE - Aerospace and Electronic Systems - September 2023 - Cover3
IEEE - Aerospace and Electronic Systems - September 2023 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2023
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2022_tutorial
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2022
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2021_tutorials
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2021
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_february2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_january2020
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2019partII
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_july2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_june2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_april2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_may2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_march2019
https://www.nxtbook.com/nxtbooks/ieee/aerospace_december2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_august2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_october2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_september2018
https://www.nxtbook.com/nxtbooks/ieee/aerospace_november2018
https://www.nxtbookmedia.com