IEEE Circuits and Systems Magazine - Q2 2018 - 107

conferences and several book chapters. His current research interests lie in the design of low-power smart image sensors and 3-D integrated circuits for autonomous
vision systems. He was a recipient of the Best Paper
Award from the International Journal of Circuit Theory
and Applications . He was a co-recipient of the Award of
the ACET and a Certificate of Teaching Excellence from
the University of Seville.
References
[1] L. O. Chua and T. Roska, "The CNN paradigm," IEEE Trans. Circuits
Syst. I, vol. 40, no. 3, pp. 147-156, Mar. 1993.
[2] T. Roska and L. O. Chua, "The CNN universal machine: An analogic array computer," IEEE Trans. Circuits Syst. II, vol. 40, pp. 163-173, Mar. 1993.
[3] T. Roska and A. Rodríguez-Vázquez, Towards the Analogic Visual Microprocessor. Chichester: Wiley, 2001.
[4] L. O. Chua and T. Roska, Cellular Neural Networks and Visual Computing. Cambridge, U.K.: Cambridge Univ. Press, 2002.
[5] L. M. Chalupa and J. S. Werner, The Visual Neurosciences. Cambridge,
MA: MIT Press 2004.
[6] (2016). Yole development. [Online]. Available: http://www.yole.fr
[7] (2016). International technology roadmap for semiconductors. 2015.
[Online]. Available: https://www.semiconductors.org/main/2015_international_technology_roadmap_for_semiconductors_itrs/
[8] Smithers Apex's Image Sensors Events Image Sensors Europe and
USA Conferences. [Online]. Available: https://www.image-sensors.com/
[9] Proc. 2017 Int. Image Sensing Workshop, Hiroshima, June 2017.
[10] R. Fontaine, "The state of the art of mainstream CMOS image sensors,"
in Proc. Int. Image Sensor Workshop, Vaals, The Netherlands, June 2015.
[11] I. Takayanagi and J. Nakamura, "High-resolution CMOS video image
sensors," Proc. IEEE, vol. 101, pp. 61-73, Jan. 2013.
[12] S. Kawahito et al., "A CMOS image sensor integrating column-parallel cyclic ADCs with on-chip digital error correction circuits," in Proc.
IEEE Int. Solid-State Circuits Conf., Feb. 2008, p. 56595.
[13] J. A. Leñero-Bardallo and A. Rodríguez-Vázquez, "Review of ADCs
for imaging," in Proc. SPIE Image Sensors and Imaging Systems Electronic
Imaging, Jan. 2014.
[14] A. Paybe et al., "A 512×424 CMOS 3D time-of-flight image sensor
with multi-frequency photo-demodulation up to 130MHz and 2GS/s ADC,"
in Proc. IEEE Int. Solid-State Circuit Conf., Feb. 2014.
[15] P. Seitz and A. J. P. Theuwisen, Eds., Single Photon Imaging. New
York: Springer, 2011.
[16] A. Tosi and F. Zappa, "MiSPiA: Microelectronic single-photon 3D
imaging arrays for low-light high-speed safety and security applications," Proc. SPIE, vol. 8899, p. 88990D, Nov. 2013.
[17] G. F. DallaBetta et al., "Avalanche photodiodes in submicron CMOS
technologies for high-sensitivity imaging," in Advances in Photodiodes.
Rijeka, Croatia: InTech, 2011, pp. 225-248.
[18] I. Vornicu et al., "Real-time inter-frame histogram builder for SPAD
image sensors," IEEE Sensors J., vol. 18, pp. 1576-1584, Feb. 2018.
[19] A. Rodríguez-Vázquez et al., "In the quest of vision-sensors-onchip: Pre-processing sensors for data reduction," in Proc. Imaging Science and Technology Electronic Imaging Image Sensors Imaging Systems,
Springfield, VA, 2017, pp. 96-101.
[20] Anafocus Ltd. [Online]. Available: http://www.anafocus.com/
[21] A. N. Belbachir, Smart Cameras. New York: Springer, 2009.
[22] A. Torralba, "How many pixels make an image?" Visual Neurosci.,
vol. 26, no. 1, pp. 123-131.
[23] A. Rodríguez-Vázquez et al., "ACE16k: The third generation of
mixed-signal SIMD-CNN ACE chips toward VSoCs," IEEE Trans. Circuits
Syst. I, vol. 51, no. 5, pp. 851-863, May 2004.
[24] J. Fernández-Berni et al., "FLIP-Q: A QCIF resolution focal-plane array for low-power image processing," IEEE J. Solid-State Circuits, vol. 46,
no. 3, pp. 669-680, Mar. 2011.
[25] S. Vargas-Sierra et al., "A 151dB high dynamic range CMOS image
sensor chip architecture with tone mapping compression embedded
in-pixel," IEEE Sensors J., vol. 15, pp. 180-195, Jan. 2015.
[26] M. Suárez et al., "Low power CMOS vision sensor for Gaussian pyramid
extraction," IEEE J. Solid-State Circuits, vol. 52, pp. 483-495, Feb. 2017.
sEcOnd quartEr 2018

[27] A. Rodríguez-Vázquez et al., "A CMOS vision system on-chip with
multi-core, cellular sensory-processing front-end," in Cellular Nanoscale Sensory Wave Computers, C. Baatar, W. Porod, and T. Roska,
Eds. New York: Springer, 2010, ch. 6.
[28] S. J. Carey et al., "A 100,000 fps vision sensor with embedded
535GOPS/W 256 x 256 SIMD processor array," in Proc. Symp. Very-LargeScale Integration Circuits, 2013, pp. C182-C183.
[29] S. Park et al., "243.3 pJ/Pixel bio-inspired time-stamp-based 2D
optic flow sensor for artificial compound eyes," in Proc. IEEE Int. SolidState Circuits Conf. Dig. Tech. Papers, 2014, pp. 126-127.
[30] A. Dupret et al., "A DSP-like analogue processing unit for smart image sensors," Int. J. Circuit Theory Applicat., vol. 30, pp. 595-609, 2002.
[31] A. Paasio et al., "A 176 × 144 processor binary I/O CNN-UM chip
design," in Proc. European Conf. Circuit Theory and Design, 1999.
[32] M. Laiho et al., "MIPA4k: Mixed-mode cellular processor array," in
Focal-Plabe Sensor-Processor Chips. New York: Springer, 2011.
[33] A. Zarandy, Ed., Focal-Plabe Sensor-Processor Chips. New York:
Springer, 2011.
[34] B. Roska and F. S. Werblin, "Vertical Interactions Across Ten Parallel, Stacked Representations in the Mammalian Retina". Nature, Vol. 410,
pp. 583-587, Mar. 2001.
[35] F. Werblin et al., "The analogic cellular neural network as a bionic
eye," Int. J. Circuit Theory Applicat., vol. 23, pp. 541-549, 1995.
[36] C. Koch and H. Li, Eds., Vision Chips, Implementing Vision Algorithms with Analog VLSI Circuits. Piscataway, NJ: IEEE Press, 1995.
[37] A. Moini, Vision Chips. Norwell, MA: Kluwer, 2000.
[38] P. Lichtsteiner, C. Posch, and T. Delbruck, "A 128 × 128 120 dB 15 µs
latency asynchronous temporal contrast vision sensor," IEEE J. SolidState Circuits, vol. 43, no. 2, pp. 566-576, Feb. 2008.
[39] R. C. González and R. E. Woods, Digital Image Processing. Englewood Cliffs, NJ: Prentice Hall 2002.
[40] R. C. González et al., Digital Image Processing Using MATLAB, 2nd
ed. Gatesmark Publishing, 2015.
[41] A. Rodríguez-Vázquez et al., "A modular programmable CMOS analog
fuzzy controller chip," IEEE Trans. Circuits Syst. II, vol. 46, pp. 251-265,
Mar. 1999.
[42] R. Saspeshkar, Ultra Low-Power Bioelectronics: Fundamentals, Biomedical Applications and Bio-Inspired Systems. Cambridge, 2010.
[43] B. J. Hosticka, "Performance comparison of analog and digital circuits," Proc. IEEE, vol. 73, pp. 25-29, Jan. 1985.
[44] A. Rodríguez-Vázquez et al., "MOST-based design and scaling of
synaptic interconnections in VLSI analog array processing chips," J.
VLSI Signal Process. Syst. Signal Image Video Technol., vol. 23, pp. 239-
266, Nov./Dec. 1999.
[45] R. Carmona et al., "A bio-inspired 2-layer mixed-signal mixed-signal
flexible programmable chip for early vision," IEEE Trans. Neural Networks, vol. 14, pp. 1313-1336, Sept. 2003.
[46] A. Rodríguez-Vázquez et al., "A 3-D chip architecture for optical sensing and concurrent processing," Proc. SPIE Photonics Europe Symp. Conf.
CMOS and Detector Technology, Apr. 2010, vol. 7726, pp. 772613-1-772612.
[47] M. Suárez et al., "CMOS-3D smart imager architectures for feature
detection," IEEE J. Emerging Select.Topics Circuits Syst., vol. 2, pp. 723-
736, Dec. 2012.
[48] A. Rodríguez-Vázquez et al., "Current mode techniques for the
implementation of continuous and discrete-time cellular neural networks,"
IEEE Trans. Circuits Syst., vol. 40, pp. 132-146, Mar. 1993.
[49] R. Carmona et al., "A 0.5mm cmos random access analog memory
chip for tera OPS speed muitimedia video processing," IEEE Trans. Multimedia, vol. 1, pp. 121-136, June 1999.
[50] G. Liñán et al., "A 1000 FPS at 128 × 128 vision processor with 8-Bit
digitized I/O," IEEE J. Solid-State Circuits, vol. 39, pp. 1044-1055, July 2004.
[51] D. Lowe, "Distinctive image features from scale-invariant keypoints," Int. J. Comput. Vis., vol. 60, no. 2, pp. 91-110, 2004.
[52] J. Fernández-Berni et al., Low-Power Smart Imagers for Vision-Enabled Sensor Networks. Springer Science & Business Media, 2012.
[53] M. Nathan et al., "The grasp multiple micro-UAV testbed," IEEE Robot. Automat. Mag., vol. 17, no. 3, pp. 56-65, 2010.
[54] J. Fernández-Berni et al. "Early forest fire detection by visionenabled wireless sensor networks," Int. J. Wildland Fire, vol. 21, pp.
938-949, July 2012.
[55] J. Fernández-Berni et al., "Bottom-up performance analysis of focal-plane mixed-signal hardware for viola-jones early vision tasks," Int.
J. Circuit Theory Applicat., vol. 43, pp. 1063-1079, 2015.
IEEE cIrcuIts and systEms magazInE

107


http://www.yole.fr https://www.semiconductors.org/main/2015_international_technology-roadmap-for-semiconductors-itrs/ https://www.semiconductors.org/main/2015_international_technology-roadmap-for-semiconductors-itrs/ https://www.image-sensors.com/ http://www.anafocus.com/

Table of Contents for the Digital Edition of IEEE Circuits and Systems Magazine - Q2 2018

Contents
IEEE Circuits and Systems Magazine - Q2 2018 - Cover1
IEEE Circuits and Systems Magazine - Q2 2018 - Cover2
IEEE Circuits and Systems Magazine - Q2 2018 - Contents
IEEE Circuits and Systems Magazine - Q2 2018 - 2
IEEE Circuits and Systems Magazine - Q2 2018 - 3
IEEE Circuits and Systems Magazine - Q2 2018 - 4
IEEE Circuits and Systems Magazine - Q2 2018 - 5
IEEE Circuits and Systems Magazine - Q2 2018 - 6
IEEE Circuits and Systems Magazine - Q2 2018 - 7
IEEE Circuits and Systems Magazine - Q2 2018 - 8
IEEE Circuits and Systems Magazine - Q2 2018 - 9
IEEE Circuits and Systems Magazine - Q2 2018 - 10
IEEE Circuits and Systems Magazine - Q2 2018 - 11
IEEE Circuits and Systems Magazine - Q2 2018 - 12
IEEE Circuits and Systems Magazine - Q2 2018 - 13
IEEE Circuits and Systems Magazine - Q2 2018 - 14
IEEE Circuits and Systems Magazine - Q2 2018 - 15
IEEE Circuits and Systems Magazine - Q2 2018 - 16
IEEE Circuits and Systems Magazine - Q2 2018 - 17
IEEE Circuits and Systems Magazine - Q2 2018 - 18
IEEE Circuits and Systems Magazine - Q2 2018 - 19
IEEE Circuits and Systems Magazine - Q2 2018 - 20
IEEE Circuits and Systems Magazine - Q2 2018 - 21
IEEE Circuits and Systems Magazine - Q2 2018 - 22
IEEE Circuits and Systems Magazine - Q2 2018 - 23
IEEE Circuits and Systems Magazine - Q2 2018 - 24
IEEE Circuits and Systems Magazine - Q2 2018 - 25
IEEE Circuits and Systems Magazine - Q2 2018 - 26
IEEE Circuits and Systems Magazine - Q2 2018 - 27
IEEE Circuits and Systems Magazine - Q2 2018 - 28
IEEE Circuits and Systems Magazine - Q2 2018 - 29
IEEE Circuits and Systems Magazine - Q2 2018 - 30
IEEE Circuits and Systems Magazine - Q2 2018 - 31
IEEE Circuits and Systems Magazine - Q2 2018 - 32
IEEE Circuits and Systems Magazine - Q2 2018 - 33
IEEE Circuits and Systems Magazine - Q2 2018 - 34
IEEE Circuits and Systems Magazine - Q2 2018 - 35
IEEE Circuits and Systems Magazine - Q2 2018 - 36
IEEE Circuits and Systems Magazine - Q2 2018 - 37
IEEE Circuits and Systems Magazine - Q2 2018 - 38
IEEE Circuits and Systems Magazine - Q2 2018 - 39
IEEE Circuits and Systems Magazine - Q2 2018 - 40
IEEE Circuits and Systems Magazine - Q2 2018 - 41
IEEE Circuits and Systems Magazine - Q2 2018 - 42
IEEE Circuits and Systems Magazine - Q2 2018 - 43
IEEE Circuits and Systems Magazine - Q2 2018 - 44
IEEE Circuits and Systems Magazine - Q2 2018 - 45
IEEE Circuits and Systems Magazine - Q2 2018 - 46
IEEE Circuits and Systems Magazine - Q2 2018 - 47
IEEE Circuits and Systems Magazine - Q2 2018 - 48
IEEE Circuits and Systems Magazine - Q2 2018 - 49
IEEE Circuits and Systems Magazine - Q2 2018 - 50
IEEE Circuits and Systems Magazine - Q2 2018 - 51
IEEE Circuits and Systems Magazine - Q2 2018 - 52
IEEE Circuits and Systems Magazine - Q2 2018 - 53
IEEE Circuits and Systems Magazine - Q2 2018 - 54
IEEE Circuits and Systems Magazine - Q2 2018 - 55
IEEE Circuits and Systems Magazine - Q2 2018 - 56
IEEE Circuits and Systems Magazine - Q2 2018 - 57
IEEE Circuits and Systems Magazine - Q2 2018 - 58
IEEE Circuits and Systems Magazine - Q2 2018 - 59
IEEE Circuits and Systems Magazine - Q2 2018 - 60
IEEE Circuits and Systems Magazine - Q2 2018 - 61
IEEE Circuits and Systems Magazine - Q2 2018 - 62
IEEE Circuits and Systems Magazine - Q2 2018 - 63
IEEE Circuits and Systems Magazine - Q2 2018 - 64
IEEE Circuits and Systems Magazine - Q2 2018 - 65
IEEE Circuits and Systems Magazine - Q2 2018 - 66
IEEE Circuits and Systems Magazine - Q2 2018 - 67
IEEE Circuits and Systems Magazine - Q2 2018 - 68
IEEE Circuits and Systems Magazine - Q2 2018 - 69
IEEE Circuits and Systems Magazine - Q2 2018 - 70
IEEE Circuits and Systems Magazine - Q2 2018 - 71
IEEE Circuits and Systems Magazine - Q2 2018 - 72
IEEE Circuits and Systems Magazine - Q2 2018 - 73
IEEE Circuits and Systems Magazine - Q2 2018 - 74
IEEE Circuits and Systems Magazine - Q2 2018 - 75
IEEE Circuits and Systems Magazine - Q2 2018 - 76
IEEE Circuits and Systems Magazine - Q2 2018 - 77
IEEE Circuits and Systems Magazine - Q2 2018 - 78
IEEE Circuits and Systems Magazine - Q2 2018 - 79
IEEE Circuits and Systems Magazine - Q2 2018 - 80
IEEE Circuits and Systems Magazine - Q2 2018 - 81
IEEE Circuits and Systems Magazine - Q2 2018 - 82
IEEE Circuits and Systems Magazine - Q2 2018 - 83
IEEE Circuits and Systems Magazine - Q2 2018 - 84
IEEE Circuits and Systems Magazine - Q2 2018 - 85
IEEE Circuits and Systems Magazine - Q2 2018 - 86
IEEE Circuits and Systems Magazine - Q2 2018 - 87
IEEE Circuits and Systems Magazine - Q2 2018 - 88
IEEE Circuits and Systems Magazine - Q2 2018 - 89
IEEE Circuits and Systems Magazine - Q2 2018 - 90
IEEE Circuits and Systems Magazine - Q2 2018 - 91
IEEE Circuits and Systems Magazine - Q2 2018 - 92
IEEE Circuits and Systems Magazine - Q2 2018 - 93
IEEE Circuits and Systems Magazine - Q2 2018 - 94
IEEE Circuits and Systems Magazine - Q2 2018 - 95
IEEE Circuits and Systems Magazine - Q2 2018 - 96
IEEE Circuits and Systems Magazine - Q2 2018 - 97
IEEE Circuits and Systems Magazine - Q2 2018 - 98
IEEE Circuits and Systems Magazine - Q2 2018 - 99
IEEE Circuits and Systems Magazine - Q2 2018 - 100
IEEE Circuits and Systems Magazine - Q2 2018 - 101
IEEE Circuits and Systems Magazine - Q2 2018 - 102
IEEE Circuits and Systems Magazine - Q2 2018 - 103
IEEE Circuits and Systems Magazine - Q2 2018 - 104
IEEE Circuits and Systems Magazine - Q2 2018 - 105
IEEE Circuits and Systems Magazine - Q2 2018 - 106
IEEE Circuits and Systems Magazine - Q2 2018 - 107
IEEE Circuits and Systems Magazine - Q2 2018 - 108
IEEE Circuits and Systems Magazine - Q2 2018 - Cover3
IEEE Circuits and Systems Magazine - Q2 2018 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q1
https://www.nxtbookmedia.com