IEEE Circuits and Systems Magazine - Q3 2018 - 26

pulse wave velocity measurements and multi-channel blind identification of local arterial dynamics," in Proc. 28th Annu. Int. Conf. IEEE Engineering Medicine and Biology Society, 2006, pp. 3521-3524.
[50] L. Xu, X. Guo, F. Yang, S. Yin, X. Zhang, and M. Q. H. Meng, "Implementation of cuff-less continuous blood pressure measurement system
based on android," in Proc. Int. Conf. Information and Automation, 2012,
pp. 552-556.
[51] L. Geddes, M. Voelz, C. Babbs, J. Bourland, and W. Tacker, "Pulse
transit time as an indicator of arterial blood pressure," Psychophysiology, vol. 18, no. 1, pp. 71-74, 1981.
[52] K. Chan, K. Hung, and Y. Zhang, "Noninvasive and cuffless measurements of blood pressure for telemedicine," in Proc. Annu. Reports
Res. Reactor Institute, vol. 4, pp. 3592-3593, 2001.
[53] H. Y. Xiang, Y. Y. Liu, Y. F. Qin, W. Pan, and M. S. Yu, "Calibration of
pulse wave transit time method in blood pressure measurement based
on the Korotkoff sound delaytime," in Proc. World Congr. Medical Physics
and Biomedical Engineering, Beijing, China, 2013, pp. 426-429.
[54] P. Shaltis, A. Reisner, and H. Asada, "A hydrostatic pressure approach to cuffless blood pressure monitoring," in Proc. 26th Annu. Int.
Conf. IEEE Engineering Medicine and Biology Society, 2004, pp. 2173-
2176.
[55] C. C. Y. Poon, Y. T. Zhang, and Y. Liu, "Modeling of pulse transit time
under the effects of hydrostatic pressure for cuffless blood pressure
measurements," in Proc. 3rd IEEE Engineering Medicine and Biology Society Int. Summer School Medical Devices and Biosensors, 2006, pp. 65-68.
[56] D. Buxi, J.-M. Redout, and M. R. Yuce, "A survey on signals and
systems in ambulatory blood pressure monitoring using pulse transit
time," Inst. Phys. Eng. Med. Physiol. Meas., vol. 36, pp. R1-R26, 2015.
[57] R. Kondo, S. Bhuiyan, H. Kawanaka, and I. M. Koji Oguri, "Separate
estimation of long-and short-term systolic blood pressure variability
from photoplethysmograph," in Proc. 36th Annu. Int. Conf. IEEE Engineering Medicine and Biology Society, 2014, pp. 1851-1854.
[58] F. A. F. Marques, D. Ribeiro, and M. F. M. Colunas, "A real time, wearable ECG and blood pressure monitoring system," in Proc. 6th Iberian
Conf. Information Systems and Technologies, 2011, pp. 1-4.
[59] A. Jadooei, O. Zaderykhin, and V. I. Shulgin, "Adaptive algorithm for
continuous monitoring of blood pressure using a pulse transit time," in
Proc. IEEE 33rd Int. Scientific Conf. Electronics and Nanotechnology, 2013,
pp. 297-301.
[60] E. C. P. Chua, S. J. Redmond, G. McDarby et al., "Towards using
photo-plethysmogram amplitude to measure blood pressure during
sleep," Ann. Biomed. Eng., vol. 38, no. 3, pp. 945-954, 2010.
[61] M. R. Ram, K. V. Madhav, E. H. Krishna, N. R. Komalla, and K. A.
Reddy, "A novel approach for motion artifact reduction in PPG signals
based on AS-LMS adaptive filter," IEEE Trans. Instrum. Meas., vol. 61, no.
5, pp. 1445-1457, 2012.
[62] P. Gibbs and H. H. Asada, "Reducing motion artifact in wearable
bio-sensors using MEMS accelerometers for active noise cancellation,"
in Proc. American Control Conf., 2005, pp. 1581-1586.
[63] T. Shimazaki and S. Hara, "Breathing motion artifact cancellation in
PPG-based heart rate sensing," in Proc. 9th Int. Symp. Medical Information and Communication Technology, 2015, pp. 200-203.
[64] S. M. Park and C. Toumazou, "Low noise current-mode CMOS transimpedance amplifier for Giga-bit optical communication," in Proc. IEEE
Int. Symp. Circuits and Systems, Monterey, CA, 1998, pp. 293-296.
[65] S. M. Park and H. J. Yoo, "1.25-Gb/s regulated cascode CMOS transimpedance amplifier for gigabit ethernet applications," IEEE J. SolidState Circuits, vol. 39, no. 1, pp. 112-121, 2004.
[66] M. Atef and H. Zimmermann, Optoelectronic Circuits in Nanometer
CMOS Technology. Switzerland: Springer International Publishing, 2016.
[67] E. Kamrani, F. Lesage, and M. Sawan, "Fully on-chip integrated photodetector front-end dedicated to real-time portable optical brain imaging," Opt. Photonics J., vol. 2, pp. 300-313, 2012.
[68] M. Tavakoli, L. Turicchia, and R. Sarpeshkar, "An ultra-low-power
pulse oximeter implemented with an energy-efficient transimpedance
amplifier," IEEE Trans. Biomed. Circuits Syst., vol. 3, no. 1, pp. 27-38, 2010.
[69] B. Razavi, Design of Integrated Circuits for Optical Communications.
New York: McGraw-Hill, 2003.
[70] K. N. Glaros and E. M. Drakakis, "A sub-mW fully-integrated pulse
oximeter front-end," IEEE Trans. Biomed. Circuits Syst., vol. 7, no. 3,
pp. 363-375, 2013.
[71] M. Alhawari, N. A. Albelooshi, and M. H. Perrott, "A 0.5 V ≤ 4 μW
CMOS light-to-digital converter based on a nonuniform quantizer for a

26

IEEE CIrCUITs AND sYsTEMs MAGAzINE

photoplethysmographic heart-rate sensor," IEEE J. Solid-State Circuits,
vol. 49, no. 1, 2014.
[72] K. Phang and D. A. Johns, "A CMOS optical preamplifier for wireless
infrared communications," IEEE Trans. Circuits Syst. II, vol. 46, no. 7, pp.
852-859, 1999.
[73] A. K. Y. Wong, K.-P. Pun, Y.-T. Zhang, and K. N. Leung, "A low-power
CMOS front-end for photoplethysmographic signal acquisition with robust dc photocurrent rejection," IEEE Trans. Biomed. Circuits Syst., vol.
2, no. 4, pp. 280-288, 2008.
[74] E. S. Winokur, T. ODwyer, and C. G. Sodini, "A low-power, dual-wavelength photoplethysmogram (PPG) SOC with static and time-varying
interferer removal," IEEE Trans. Biomed. Circuits Syst., pp. 581-589, 2015.
[75] C. Yan Li, C. Y. Poon, and Y.-T. Zhang, "Analog integrated circuits
design for processing physiological signals," IEEE Rev. Biomed. Eng.,
vol. 3, pp. 93-105, 2010.
[76] R. H. Olsson, D. L. Buhl, A. M. Sirota, G. Buzsaki, and K. D. Wise,
"Band-tunable and multiplexed integrated circuits for simultaneous
recording and stimulation with microelectrode arrays," IEEE Trans.
Biomed. Eng., vol. 52, no. 7, pp. 1303-1311, 2005.
[77] X. D. Zou, X. Y. Xu, L. B. Yao, and Y. Lian, "A 1 V 450 nW fully integrated programmable biomedical sensor interface chip," IEEE J. SolidState Circuits, vol. 44, no. 4, pp. 1067-1077, 2009.
[78] R. R. Harrison and C. Charles, "A low-power low-noise CMOS amplifier for neural recording applications," IEEE J. Solid-State Circuits, vol.
38, no. 6, pp. 958-965, 2003.
[79] T. Denison, K. Consoer, W. Santa, A.-T. Avestruz, J. Cooley, and A.
Kelly, "A 2 μW 100 nV/rtHz chopper-stabilized instrumentation amplifier
for chronic measurement of neural field potentials," IEEE J. Solid-State
Circuits, vol. 42, no. 12, pp. 2934-2945, 2007.
[80] N. Verma, A. Shoeb, J. Bohorquez, J. Dawson, J. Guttag, and A. P.
Chandrakasan, "A micro-power EEG acquisition SOC with integrated
feature extraction processor for a chronic seizure detection system,"
IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 804-816, 2010.
[81] G. A. Rincon-Mora, "Active capacitor multiplier in miller-compensated circuits," IEEE Trans. Solid-State Circuits, vol. 35, no. 1, pp. 26-32,
2000.
[82] J. Aguado-Ruiz, A. J. Lopez-Martin, and J. Ramirez-Angulo, "Three
novel improved CMOS C-multipliers," Int. J. Circuit Theory Appl., vol. 40,
pp. 607-616, 2012.
[83] Y. Li, A. Wong, and Y.-T. Zhang, "Fully-integrated transimpedance
amplifier for photoplethysmographic signal processing with two-stage
miller capacitance multiplier," Electron. Lett., vol. 46, no. 11, 2010.
[84] A. K. Y. Wong, K. N. Leung, K.-P. Pun, and I. Yuan-Ting Zhang, "A
0.5-Hz high-pass cutoff dual-loop transimpedance amplifier for wearable NIR sensing device," IEEE Trans. Circuits Syst. II, vol. 57, no. 7,
2010.
[85] J. Silva-Martinez and J. Salcedo-Suner, "IC voltage-to-current transducers with very-small transconductance," Analog Integr. Circuits Signal
Process., vol. 13, no. 3, pp. 285-293, 1997.
[86] S. Solis-Bustos, J. Silva-Martinez, F. Maloberti, and E. Sanchez-Sinencio, "A 60 dB dynamic-range CMOS sixth-order 2.4 Hz low-pass filter
for medical applications," IEEE Trans. Circuits Syst. II, vol. 47, no. 12, pp.
1391-1398, 2000.
[87] A. Arnaud, R. Fiorell, and C. Galup-Montoro, "Nanowatt, sub-ns
otas, with sub-10-mv input offset, using series-parallel current mirrors," IEEE J. Solid-State Circuits, vol. 41, no. 9, pp. 2009-2018, 2006.
[88] J. A. C. Patterson and G.-Z. Yang, "Dual-mode additive noise rejection in wearable photoplethysmography," in Proc. 9th Int. Conf. Wearable and Implantable Body Sensor Networks, 2012, pp. 97-102.
[89] D. A. Peláez and E. R. Villegas, "LED power reduction trade-offs
for ambulatory pulse oximetry," in Proc. IEEE 29th Annu. Int. Conf.
Engineering Medicine and Biology Society, Lyon, France, 2007, pp.
2296-2299.
[90] W. Saadeh, T. Tekeste, and M. H. Perrott, "A ≥ 89% efficient LED
driver with 0.5V supply voltage for applications requiring low average current," in Proc. IEEE Asian Solid-State Circuits Conf., 2013,
pp. 273-276.
[91] (2016). [Online]. Available: http://www.soterawireless.com/visimobile/
[92] (2016). [Online]. Available: http://somnomedics.eu/products/longterm-blood-pressure-somnotouchtm-nibp/
[93] (2016). [Online]. Available: https://www.simband.io/
[94] (2016). [Online]. Available: https://omronhealthcare.com/

ThIrD qUArTEr 2018


http://www.soterawireless.com/visi-mobile http://www.soterawireless.com/visi-mobile http://somnomedics.eu/products/long-term-blood-pressure-somnotouchtm-nibp/ http://somnomedics.eu/products/long-term-blood-pressure-somnotouchtm-nibp/ https://www.simband.io/ https://www.omronhealthcare.com/

Table of Contents for the Digital Edition of IEEE Circuits and Systems Magazine - Q3 2018

Contents
IEEE Circuits and Systems Magazine - Q3 2018 - Cover1
IEEE Circuits and Systems Magazine - Q3 2018 - Cover2
IEEE Circuits and Systems Magazine - Q3 2018 - Contents
IEEE Circuits and Systems Magazine - Q3 2018 - 2
IEEE Circuits and Systems Magazine - Q3 2018 - 3
IEEE Circuits and Systems Magazine - Q3 2018 - 4
IEEE Circuits and Systems Magazine - Q3 2018 - 5
IEEE Circuits and Systems Magazine - Q3 2018 - 6
IEEE Circuits and Systems Magazine - Q3 2018 - 7
IEEE Circuits and Systems Magazine - Q3 2018 - 8
IEEE Circuits and Systems Magazine - Q3 2018 - 9
IEEE Circuits and Systems Magazine - Q3 2018 - 10
IEEE Circuits and Systems Magazine - Q3 2018 - 11
IEEE Circuits and Systems Magazine - Q3 2018 - 12
IEEE Circuits and Systems Magazine - Q3 2018 - 13
IEEE Circuits and Systems Magazine - Q3 2018 - 14
IEEE Circuits and Systems Magazine - Q3 2018 - 15
IEEE Circuits and Systems Magazine - Q3 2018 - 16
IEEE Circuits and Systems Magazine - Q3 2018 - 17
IEEE Circuits and Systems Magazine - Q3 2018 - 18
IEEE Circuits and Systems Magazine - Q3 2018 - 19
IEEE Circuits and Systems Magazine - Q3 2018 - 20
IEEE Circuits and Systems Magazine - Q3 2018 - 21
IEEE Circuits and Systems Magazine - Q3 2018 - 22
IEEE Circuits and Systems Magazine - Q3 2018 - 23
IEEE Circuits and Systems Magazine - Q3 2018 - 24
IEEE Circuits and Systems Magazine - Q3 2018 - 25
IEEE Circuits and Systems Magazine - Q3 2018 - 26
IEEE Circuits and Systems Magazine - Q3 2018 - 27
IEEE Circuits and Systems Magazine - Q3 2018 - 28
IEEE Circuits and Systems Magazine - Q3 2018 - 29
IEEE Circuits and Systems Magazine - Q3 2018 - 30
IEEE Circuits and Systems Magazine - Q3 2018 - 31
IEEE Circuits and Systems Magazine - Q3 2018 - 32
IEEE Circuits and Systems Magazine - Q3 2018 - 33
IEEE Circuits and Systems Magazine - Q3 2018 - 34
IEEE Circuits and Systems Magazine - Q3 2018 - 35
IEEE Circuits and Systems Magazine - Q3 2018 - 36
IEEE Circuits and Systems Magazine - Q3 2018 - 37
IEEE Circuits and Systems Magazine - Q3 2018 - 38
IEEE Circuits and Systems Magazine - Q3 2018 - 39
IEEE Circuits and Systems Magazine - Q3 2018 - 40
IEEE Circuits and Systems Magazine - Q3 2018 - 41
IEEE Circuits and Systems Magazine - Q3 2018 - 42
IEEE Circuits and Systems Magazine - Q3 2018 - 43
IEEE Circuits and Systems Magazine - Q3 2018 - 44
IEEE Circuits and Systems Magazine - Q3 2018 - 45
IEEE Circuits and Systems Magazine - Q3 2018 - 46
IEEE Circuits and Systems Magazine - Q3 2018 - 47
IEEE Circuits and Systems Magazine - Q3 2018 - 48
IEEE Circuits and Systems Magazine - Q3 2018 - Cover3
IEEE Circuits and Systems Magazine - Q3 2018 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q1
https://www.nxtbookmedia.com