IEEE Circuits and Systems Magazine - Q2 2019 - 32

[49] P. Yao, B. Y. Hou, Y. J. Pan, and X. Li, "Structural controllability of
temporal networks with a single switching controller," PLoS One, vol.
12, no. 1, p. e0170584, 2017.
[50] B. Liu, T. G. Chu, L. Wang, and G. M. Xie, "Controllability of a leaderfollower dynamic network with switching topology," IEEE Trans. Autom.
Control, vol. 53, no. 4, pp. 1009-1013, 2008.
[51] X. M. Liu, H. Lin, and B. M. Chen, "Graph-theoretic characterisations of structural controllability for multi-agent system with switching
topology," Int. J. Control, vol. 86, no. 2, pp. 222-231, 2013.
[52] P. A. Fuhrmann and U. Helmke, The Mathematics of Networks of Linear Systems. New York: Springer, 2015.
[53] J. E. Hopcroft and R. M. Karp, "An n5/2 algorithm for maximum
matchings in bipartite graphs," SIAM J. Comput., vol. 2, no. 4, pp. 225-
231, 1973.
[54] B. B. Wang, L. Gao, and Y. Gao, "Control range: a controllabilitybased index for node significance in directed networks," J. Stat. Mech.,
vol. 4, p. P04011, 2012.
[55] B. B. Wang, L. Gao, Y. Gao, Y. Deng, and Y. Wang, "Controllability
and observability analysis for vertex domination centrality in directed
networks," Sci. Rep., vol. 4, p. 5399, 2014.
[56] Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabási, "Control centrality and
hierarchical structure in complex networks," PLoS One, vol. 7, no. 9,
p. e44459, 2012.
[57] T. Jia and A.-L. Barabási, "Control capacity and a random sampling
method in exploring controllability of complex networks," Sci. Rep., vol.
3, p. 2354, 2013.
[58] J. Ding and Y.-Z. Lu, "Control backbone: an index for quantifying
a node's importance for the network controllability," Neurocomputing,
vol. 153, pp. 309-318. 2015.
[59] T. Jia, Y.-Y. Liu, E. Csóka, M. Pósfai, J.-J. Slotine, and A.-L. Barabási,
"Emergence of bimodality in controlling complex networks," Nat. Commun., vol. 4, p. 2002, 2013.
[60] T. Jia and M. Pósfai, "Connecting core percolation and controllability of complex networks," Sci. Rep., vol. 4, p. 5379, 2014.
[61] J. Ruths and D. Ruths, "Control profiles of complex networks," Science, vol. 343, no. 6177, pp. 1373-1376, 2014.
[62] W.-X. Wang, X. Ni, Y.-C. Lai, and C. Grebogi, "Optimizing controllability of complex networks by minimum structural perturbations,"
Phys. Rev. E, vol. 85, no. 2, p. 026115, 2012.
[63] S.-P. Pang and F. Hao, "Optimizing controllability of edge dynamics
in complex networks by perturbing network structure," Physica A, vol.
470, pp. 217-227, 2017.
[64] Y. D. Xiao, S. Y. Lao, L. L. Hou, and L. Bai, "Edge orientation for
optimizing controllability of complex networks," Phys. Rev. E, vol. 90,
no. 4, p. 042804, 2014.
[65] L. L. Hou, S. Y. Lao, M. Small, and Y. D. Xiao, "Enhancing complex
network controllability by minimum link direction reversal," Phys. Lett.
A, vol. 379, no. 20-21, pp. 1321-1325, 2015.
[66] J. Ding, P. Tan, and Y.-Z. Lu, "Optimizing the controllability index of
directed networks with the fixed number of control nodes," Neurocomputing, vol. 171, pp. 1524-1532, 2016.
[67] G. Yan, J. Ren, Y.-C. Lai, C.-H. Lai, and B. Li, "Controlling complex
networks: How much energy is needed?" Phys. Rev. Lett., vol. 108, no.
21, p. 218703, 2012.
[68] G. Yan, G. Tsekenis, B. Barzel, J.-J. Slotine, Y.-Y. Liu, and A.-L.
Barabási, "Spectrum of controlling and observing complex networks,"
Nat. Phys., vol. 11, pp. 779-786, 2015.
[69] Y.-Z. Chen, L.-Z. Wang, W.-X. Wang, and Y.-C. Lai, "Energy scaling and reduction in controlling complex networks," R. Soc. Open Sci.,
vol. 3, p. 160064, 2016.
[70] L.-Z. Wang, Y.-Z. Chen, W.-X. Wang, and Y.-C. Lai, "Physical controllability of complex networks," Sci. Rep., vol. 7, p. 40198, 2017.
[71] F. Pasqualetti, S. Zampieri, and F. Bullo, "Controllability metrics,
limitations and algorithms for complex networks," IEEE Trans. Control
Netw. Syst., vol. 1, no. 1, pp. 40-52, 2014.
[72] J. Sun and A. E. Motter, "Controllability transition and nonlocality in network control," Phys. Rev. Lett., vol. 110, no. 20, p. 208701,
2013.
[73] S. Wuchty, "Controllability in protein interaction networks," Proc.
Natl. Acad. Sci. USA, vol. 111, no. 19, pp. 7156-7160, 2014.

32 	

[74] J. C. Nacher and T. Akutsu, "Dominating scale-free networks with
variable scaling exponent: Heterogeneous networks are not difficult to
control," New J. Phys., vol. 14, p. 073005, 2012.
[75] X. M. Liu and L. Q. Pan, "Detection of driver metabolites in the human liver metabolic network using structural controllability analysis,"
BMC Syst. Biol., vol. 8, p. 51, 2014.
[76] C. Zhao, A. Bin, W. M. Ye, Y. Fan, and Z. R. Di, "Motif for controllable toggle switch in gene regulatory networks," Physica A, vol. 419,
pp. 498-505, 2015.
[77] D. Delpini, S. Battiston, M. Riccaboni, G. Gabbi, F. Pammolli, and
G. Caldarelli, "Evolution of controllability in interbank networks," Sci.
Rep., vol. 3, p. 1626, 2013.
[78] S. Gu et al., "Controllability of structural brain networks," Nat. Commun., vol. 6, p. 8414, 2015.
[79] J. D. Medaglia et al., "Cognitive control in the controllable connectome," arXiv: Preprint, arXiv:1606.09185, 2016.
[80] E. Tang et al., "Developmental increases in white matter network
controllability support a growing diversity of brain dynamics," Nat.
Commun., vol. 8, p. 1252, 2017.
[81] Y.-S. Li, D.-Z. Ma, H.-G. Zhang, and Q.-Y. Sun, "Critical nodes identification of power systems based on controllability of complex networks,"
Appl. Sci., vol. 5, no. 3, pp. 622-636, 2015.
[82] Y. Q. Hao, Z. S. Duan, and G. H. Wen, "Controllability and observability of an n-link robot with multiple active links," Int. J. Robust Nonlinear Control, vol. 27, no. 18, pp. 4633-4647, 2017.
[83] X. F. Wang and G. Chen, "Complex networks: small-world, scale-free
and beyond," IEEE Circuits Syst. Mag., vol. 3, no. 1, pp. 6-20, 2003.
[84] L. Y. Cui, S. Kumara, and R. Albert, "Complex networks: an engineering view," IEEE Circuits Syst. Mag., vol. 10, no. 3, pp. 10-25, 2010.
[85] S. L. Tan, J. Lü, G. Chen, and D. J. Hill, "When structure meets function in evolutionary dynamics on complex networks," IEEE Circuits Syst.
Mag., vol. 14, no. 4, pp. 36-50, 2014.
[86] A. J. Whalen, S. N. Brennan, T. D. Sauer, and S. J. Schiff, "Observability and controllability of nonlinear networks: the role of symmetry,"
Phys. Rev. X, vol. 5, p. 011005, 2015.
[87] L.-Z. Wang et al., "A geometrical approach to control and controllability of nonlinear dynamical networks," Nat. Commun., vol. 7,
p. 11323, 2016.
[88] J. G. T. Aanudo, G. Yang, and R. Albert, "Structure-based control of
complex networks with nonlinear dynamics," Proc. Natl. Acad. Sci. USA,
vol. 114, no. 28, pp. 7234-7239, 2017.
[89] Y.-Z. Sun, S.-Y. Leng, Y.-C. Lai, C. Grebogi, and W. Lin, "Closed-loop
control of complex networks: a trade-off between time and energy,"
Phys. Rev. Lett., vol. 119, no. 19, p. 198301, 2017.
[90] C.-L. Pu, W.-J. Pei, and A. Michaelson, "Robustness analysis of network controllability," Physica A, vol. 391, no. 18, pp. 4420-4425, 2012.
[91] S. Nie, X.-W. Wang, H. F. Zhang, Q. L. Li, and B. H. Wang, "Robustness
of controllability for networks based on edge-attack," PLoS One, vol. 9,
no. 2, p. e89066, 2014.
[92] S. Jafari, A. Ajorlou, and A. G. Aghdam, "Leader localization in
multi-agent systems subject to failure: a graph-theoretic approach,"
Automatica, vol. 47, no. 8, pp. 1744-1750, 2011.
[93] M. A. Rahimian and A. G. Aghdam, "Structural controllability of
multi-agent networks: robustness against simultaneous failures," Automatica, vol. 49, no. 11, pp. 3149-3157, 2013.
[94] X. Y. Yan, W.-X. Wang, G. Chen, and D. H. Shi, "Multiplex congruence
network of natural numbers," Sci. Rep., vol. 6, p. 23714, 2016.
[95] Y. Lou, L. Wang, and G. Chen, "Toward stronger robustness of network controllability: a snapback network model," IEEE Trans. Circuits
Syst. I, vol. 65, no. 9, pp. 2983-2991, 2018.
[96] S.-P. Pang, F. Hao, and W.-X. Wang, "Robustness of controlling edge
dynamics in complex networks against node failure," Phys. Rev. E, vol.
94, p. 052310, 2016.
[97] M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, and
M. A. Porter, "Multilayer networks," J. Compl. Netw., vol. 2, pp. 203-271, 2014.
[98] M. Pósfai, J. X. Gao, S. P. Cornelius, A.-L. Barabási, and R. M. D'Souza,
"Controllability of multiplex, multi-time-scale networks," Phys. Rev. E,
vol. 94, p. 032316, 2016.
[99] S. Boccaletti et al., "The structure and dynamics of multilayer networks," Phys. Rep., vol. 544, pp. 1-122, 2014.

IEEE circuits and systems magazine 		SECOND QUARTER 2019



IEEE Circuits and Systems Magazine - Q2 2019

Table of Contents for the Digital Edition of IEEE Circuits and Systems Magazine - Q2 2019

Contents
IEEE Circuits and Systems Magazine - Q2 2019 - Cover1
IEEE Circuits and Systems Magazine - Q2 2019 - Cover2
IEEE Circuits and Systems Magazine - Q2 2019 - 1
IEEE Circuits and Systems Magazine - Q2 2019 - Contents
IEEE Circuits and Systems Magazine - Q2 2019 - 3
IEEE Circuits and Systems Magazine - Q2 2019 - 4
IEEE Circuits and Systems Magazine - Q2 2019 - 5
IEEE Circuits and Systems Magazine - Q2 2019 - 6
IEEE Circuits and Systems Magazine - Q2 2019 - 7
IEEE Circuits and Systems Magazine - Q2 2019 - 8
IEEE Circuits and Systems Magazine - Q2 2019 - 9
IEEE Circuits and Systems Magazine - Q2 2019 - 10
IEEE Circuits and Systems Magazine - Q2 2019 - 11
IEEE Circuits and Systems Magazine - Q2 2019 - 12
IEEE Circuits and Systems Magazine - Q2 2019 - 13
IEEE Circuits and Systems Magazine - Q2 2019 - 14
IEEE Circuits and Systems Magazine - Q2 2019 - 15
IEEE Circuits and Systems Magazine - Q2 2019 - 16
IEEE Circuits and Systems Magazine - Q2 2019 - 17
IEEE Circuits and Systems Magazine - Q2 2019 - 18
IEEE Circuits and Systems Magazine - Q2 2019 - 19
IEEE Circuits and Systems Magazine - Q2 2019 - 20
IEEE Circuits and Systems Magazine - Q2 2019 - 21
IEEE Circuits and Systems Magazine - Q2 2019 - 22
IEEE Circuits and Systems Magazine - Q2 2019 - 23
IEEE Circuits and Systems Magazine - Q2 2019 - 24
IEEE Circuits and Systems Magazine - Q2 2019 - 25
IEEE Circuits and Systems Magazine - Q2 2019 - 26
IEEE Circuits and Systems Magazine - Q2 2019 - 27
IEEE Circuits and Systems Magazine - Q2 2019 - 28
IEEE Circuits and Systems Magazine - Q2 2019 - 29
IEEE Circuits and Systems Magazine - Q2 2019 - 30
IEEE Circuits and Systems Magazine - Q2 2019 - 31
IEEE Circuits and Systems Magazine - Q2 2019 - 32
IEEE Circuits and Systems Magazine - Q2 2019 - 33
IEEE Circuits and Systems Magazine - Q2 2019 - 34
IEEE Circuits and Systems Magazine - Q2 2019 - 35
IEEE Circuits and Systems Magazine - Q2 2019 - 36
IEEE Circuits and Systems Magazine - Q2 2019 - 37
IEEE Circuits and Systems Magazine - Q2 2019 - 38
IEEE Circuits and Systems Magazine - Q2 2019 - 39
IEEE Circuits and Systems Magazine - Q2 2019 - 40
IEEE Circuits and Systems Magazine - Q2 2019 - 41
IEEE Circuits and Systems Magazine - Q2 2019 - 42
IEEE Circuits and Systems Magazine - Q2 2019 - 43
IEEE Circuits and Systems Magazine - Q2 2019 - 44
IEEE Circuits and Systems Magazine - Q2 2019 - 45
IEEE Circuits and Systems Magazine - Q2 2019 - 46
IEEE Circuits and Systems Magazine - Q2 2019 - 47
IEEE Circuits and Systems Magazine - Q2 2019 - 48
IEEE Circuits and Systems Magazine - Q2 2019 - 49
IEEE Circuits and Systems Magazine - Q2 2019 - 50
IEEE Circuits and Systems Magazine - Q2 2019 - 51
IEEE Circuits and Systems Magazine - Q2 2019 - 52
IEEE Circuits and Systems Magazine - Q2 2019 - 53
IEEE Circuits and Systems Magazine - Q2 2019 - 54
IEEE Circuits and Systems Magazine - Q2 2019 - 55
IEEE Circuits and Systems Magazine - Q2 2019 - 56
IEEE Circuits and Systems Magazine - Q2 2019 - 57
IEEE Circuits and Systems Magazine - Q2 2019 - 58
IEEE Circuits and Systems Magazine - Q2 2019 - 59
IEEE Circuits and Systems Magazine - Q2 2019 - 60
IEEE Circuits and Systems Magazine - Q2 2019 - 61
IEEE Circuits and Systems Magazine - Q2 2019 - 62
IEEE Circuits and Systems Magazine - Q2 2019 - 63
IEEE Circuits and Systems Magazine - Q2 2019 - 64
IEEE Circuits and Systems Magazine - Q2 2019 - 65
IEEE Circuits and Systems Magazine - Q2 2019 - 66
IEEE Circuits and Systems Magazine - Q2 2019 - 67
IEEE Circuits and Systems Magazine - Q2 2019 - 68
IEEE Circuits and Systems Magazine - Q2 2019 - Cover3
IEEE Circuits and Systems Magazine - Q2 2019 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q1
https://www.nxtbookmedia.com