IEEE Circuits and Systems Magazine - Q3 2019 - 21
[28] L. Conradt and C. List, "Group decisions in humans and animals:
A survey," Philos. Trans. R. Soc. B, vol. 364, no. 1518, pp. 719-742, 2009.
[29] A. Cavagna et al., "The STARFLAG handbook on collective animal
behaviour: Part I, empirical methods," Anim. Behav., vol. 76, no. 1, pp.
217-236, 2008.
[30] A. Cavagna et al., "The STARFLAG handbook on collective animal
behaviour: Part II, three-dimensional analysis," Anim. Behav., vol. 76,
no. 1, pp. 237-246, 2008.
[31] M. Ballerini et al., "Empirical investigation of starling flocks: A
benchmark study in collective," Anim. Behav., vol. 76, no. 1, pp. 201-
215, 2008.
[32] G. D. Kattas, X. Xu, and M. Small, "Dynamical modeling of collective
behavior from pigeon flight data: Flock cohesion and dispersion," PLoS
Comput. Biol., vol. 8, no. 3, pp. 1-15, 2012.
[33] D. Biro, T. Guilford, G. Dell'Omo, and H. Lipp, "How the viewing of familiar landscapes prior to release allows pigeons to home
faster: Evidence from GPS tracking," J. Exp. Biol., vol. 205, pp. 3833-
3844, 2002.
[34] D. Biro, D. J. T. Sumpter, J. Meade, and T. Guilford, "From compromise to leadership in pigeon homing," Curr. Biol., vol. 16, no. 21, pp.
2123-2126, 2006.
[35] G. Dell'Ariccia, G. Dell'Omo, D. P. Wolfer, and H. Lipp, "Flock flying improves pigeons' homing: GPS track analysis of individual flyers versus small groups," Anim. Behav., vol. 76, no. 4, pp. 1165-1172,
2008.
[36] P. Seiler, A. Pant, and K. J. Hedrick, "Analysis of bird formations,"
in Proc. 41st IEEE Conf. Decision and Control, vol. 1. Las Vegas, NV, 2002,
pp. 118-123.
[37] T. C. Williams, T. J. Klonowski, and P. Berkeley, "Angle of Canada
goose V flight formation measured by radar," Auk, vol. 93, no. 3, pp.
554-559, 1976.
[38] P. Seiler, A. Pant, and J. K. Hedrick, "A systems interpretation for
observations of bird V-formations," J. Theor. Biol., vol. 221, no. 2, pp.
279-284, 2003.
[39] P. B. S. Lissaman and C. A. Shollenberger, "Formation flight of
birds," Science, vol. 168, no. 3934, pp. 1003-1005, 1970.
[40] A. Nathan and V. C. Barbosa, "V-like formations in flocks of artificial birds," Artif. Life, vol. 14, no. 2, pp. 179-188, 2008.
[41] Y. Hayakawa, "Spatiotemporal dynamics of skeins of wild geese,"
Europhys. Lett., vol. 89, no. 4, p. 48004, 2010.
[42] S. Portugal et al., "Upwash exploitation and downwash avoidance
by flap phasing in ibis formation flight," Nature, vol. 505, no. 7483, pp.
399-402, 2014.
[43] B. Voelkl, S. J. Portugal, M. Unsöld, J. R. Usherwood, A. M. Wilson,
and J. Fritz, "Matching times of leading and following suggest cooperation through direct reciprocity during V-formation flight in ibis," Proc.
Natl. Acad. Sci. USA, vol. 112, no. 7, pp. 2115-2120, 2015.
[44] C. W. Reynolds, "Flocks, herds and schools: A distributed behavioral model," Comput. Graph., vol. 21, no. 4, pp. 25-34, 1987.
[45] I. Bajec, M. Marz, and N. Zimic, "Boids with a fuzzy way of thinking," in Proc. Artificial Intelligence and Soft Computing, pp. 58-62, vol.
25, 2003.
[46] I. Bajec, M. Marz, and N. Zimic, "Fuzzifying the thoughts of animats," in Proc. 10th Int. Fuzzy Systems Association World Congress, Istanbul, Turkey, June 2003, pp. 195-202.
[47] I. Couzin, J. Krause, R. James, G. D. Ruxton, and N. R. Franks, "Collective memory and spatial sorting in animal groups," J. Theor. Biol.,
vol. 218, pp. 1-11, 2002.
[48] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet, "Novel
type of phase transition in a system of self-driven particles," Phys. Rev.
Lett., vol. 75, no. 6, pp. 1226-1229, 1995.
[49] A. Okubo, Diffusion and Ecological Problems, Mathematical Models.
New York: Springer-Verlag, 1980.
[50] A. Mogilner and L. Edelstein-Keshet, "A non-local model for a
swarm," J. Math. Biol., vol. 38, pp. 534-570, 1999.
[51] A. Eriksson, M. N. Jaconi, J. Nystrom, and K. Tunstrom, "Determining interaction rules in animal swarms," Behav. Ecol., vol. 21, no. 5, pp.
1106-1111, 2010.
[52] C. Topaz and A. Bertozzi, "Swarming patterns in a two-dimensional," SIAM J. Appl. Math., vol. 65, no. 1, pp. 1084-1097, 2004.
[53] C. Yates et al., "Inherent noise can facilitate coherence in collective
swarm motion," Proc. Natl. Acad. Sci. USA, vol. 106, no. 14, pp. 5464-
5469, 2009.
THIRD QUARTER 2019
[54] X. Li and J. Xiao, "Swarming in homogeneous environments: A social interaction based framework," J. Theor. Biol., vol. 264, no. 3, pp.
747-759, 2010.
[55] L. Edelstein-Keshet, "Mathematical models of swarming and social
aggregation," in Proc. 2001 Int. Symp. Nonlinear Theory and its Applications, Miyagi, Japan, pp. 1-7.
[56] J. Carrillo, M. D'Orsogna, and V. Panferov, "Double milling in selfpropelled swarms from kinetic theory," Kinet. Relat. Mod., vol. 2, no. 2,
pp. 363-378, 2009.
[57] J. Krause, G. Ruxton, and S. Krause, "Swarm intelligence in animals
and humans," Trends Ecol. Evol., vol. 25, no. 1, pp. 28-34, 2010.
[58] T. Vicsek, "Swarming microtubules," Nature, vol. 483, pp. 411-412, 2012.
[59] M. Rubenstein, A. Cornejo, and R. Nagpal, "Programmable selfassembly in a thousand-robot swarm," Science, vol. 345, no. 6198, pp.
795-798, 2014.
[60] M. Ballerini et al., "Interaction ruling animal collective behavior
depends on topological rather than metric distance: Evidence from a
field study," Proc. Natl. Acad. Sci. USA, vol. 105, no. 4, pp. 1232-1237,
2008.
[61] N. Bode, W. Franks, and A. Wood, "Limited interactions in flocks:
Relating model simulations to empirical data," J. R. Soc. Interface, vol.
8, pp. 301-304, 2011.
[62] A. Czirok, H. Stanley, and T. Vicsek, "Spontaneously ordered motion of self-propelled particles," J. Phys. A, vol. 30, pp. 1375-1385, 1997.
[63] H. Levine, W. Rappel, and I. Cohen, "Self-organization in systems of
self-propelled particles," Phys. Rev. E, vol. 63, p. 017101, 2000.
[64] G. Grégoire and H. Chaté, "Onset of collective and cohesive motion," Phys. Rev. Lett., vol. 92, no. 2, p. 025702, 2004.
[65] U. Erdmann, W. Ebeling, and A. S. Mikhailov, "Noise-induced transition from translational to rotational motion of swarms," Phys. Rev. E,
vol. 71, no. 5, p. 051904, 2005.
[66] C. Huepe and M. Aldana, "New tools for characterizing swarming
systems: A comparison of minimal models," Phys. A, vol. 387, no. 12, pp.
2809-2822, 2008.
[67] E. Bertin, M. Droz, and G. Grégoire, "Hydrodynamic equations for
self-propelled particles: Microscopic derivation and stability analysis,"
J. Phys. A, vol. 42, p. 445011, 2009.
[68] J. Toner and Y. Tu, "Flocks, herds, and schools: A quantitative theory of flocking," Phys. Rev. E, vol. 58, no. 4, pp. 4828-4858, 1998.
[69] H. Chaté, F. Ginelli, and R. Montagne, "Simple model for active
nematics: Quasi-long-range order and giant fluctuations," Phys. Rev.
Lett., vol. 96, no. 18, p. 180602, 2006.
[70] M. Nagy, I. Daruka, and T. Vicsek, "New aspects of the continuous
phase transition in the scalar noise model (SNM) of collective motion,"
Phys. A, vol. 373, pp. 445-454, 2007.
[71] A. Cavagna et al., "Scale-free correlations in starling flocks," Proc.
Natl. Acad. Sci. USA, vol. 107, no. 26, pp. 11865-11870, 2010.
[72] A. Jadbabaie, J. Lin, and A. S. Morse, "Coordination of groups of
mobile autonomous agents using nearest neighbor rules," IEEE Trans.
Autom. Control, vol. 48, no. 6, pp. 988-1001, 2003.
[73] G. G. Tang and L. Guo, "Convergence of a class of multi-agent systems in probabilistic framework," J. Syst. Sci. Complex, vol. 20, no. 2, pp.
173-197, 2007.
[74] G. Chen, Z. Liu, and L. Guo, "The smallest possible interaction radius for flock synchronization," SIAM J. Control Optim., vol. 50, no. 4,
pp. 1950-1970, 2012.
[75] P. Gupta and P. R. Kumar, "Critical power for asymptotic connectivity in wireless networks," in Stochastic Analysis, Control, Optimization and Application. Cambridge, MA: Birkhauser, 1999, pp.
547-566.
[76] F. Cucker and S. Smale, "Emergent behavior in flocks," IEEE Trans.
Autom. Control, vol. 52, no. 5, pp. 852-856, 2007.
[77] F. Cucker and S. Smale, "On the mathematics of emergence," Jpn. J.
Math., vol. 2, no. 1, pp. 197-227, 2007.
[78] F. Cucker and E. Mordecki, "Flocking in noisy environments," J.
Math. Pures Appl., vol. 89, no. 3, pp. 278-296, 2008.
[79] S. Ha, K. Lee, and D. Levy, "Emergence of time-asymptotic flocking
in a stochastic Cucker-Smale system," Commun. Math. Sci., vol. 7, no. 2,
pp. 453-469, 2009.
[80] Y. Shang, "Emergence in random noisy environments," Int. J. Math.
Anal., vol. 4, no. 25, pp. 1205-1215, 2010.
[81] F. Cucker and J. G. Dong, "Avoiding collisions in flocks," IEEE Trans.
Autom. Control, vol. 55, no. 5, pp. 1238-1243, 2010.
IEEE CIRCUITS AND SYSTEMS MAGAZINE
21
IEEE Circuits and Systems Magazine - Q3 2019
Table of Contents for the Digital Edition of IEEE Circuits and Systems Magazine - Q3 2019
Contents
IEEE Circuits and Systems Magazine - Q3 2019 - Cover1
IEEE Circuits and Systems Magazine - Q3 2019 - Cover2
IEEE Circuits and Systems Magazine - Q3 2019 - 1
IEEE Circuits and Systems Magazine - Q3 2019 - Contents
IEEE Circuits and Systems Magazine - Q3 2019 - 3
IEEE Circuits and Systems Magazine - Q3 2019 - 4
IEEE Circuits and Systems Magazine - Q3 2019 - 5
IEEE Circuits and Systems Magazine - Q3 2019 - 6
IEEE Circuits and Systems Magazine - Q3 2019 - 7
IEEE Circuits and Systems Magazine - Q3 2019 - 8
IEEE Circuits and Systems Magazine - Q3 2019 - 9
IEEE Circuits and Systems Magazine - Q3 2019 - 10
IEEE Circuits and Systems Magazine - Q3 2019 - 11
IEEE Circuits and Systems Magazine - Q3 2019 - 12
IEEE Circuits and Systems Magazine - Q3 2019 - 13
IEEE Circuits and Systems Magazine - Q3 2019 - 14
IEEE Circuits and Systems Magazine - Q3 2019 - 15
IEEE Circuits and Systems Magazine - Q3 2019 - 16
IEEE Circuits and Systems Magazine - Q3 2019 - 17
IEEE Circuits and Systems Magazine - Q3 2019 - 18
IEEE Circuits and Systems Magazine - Q3 2019 - 19
IEEE Circuits and Systems Magazine - Q3 2019 - 20
IEEE Circuits and Systems Magazine - Q3 2019 - 21
IEEE Circuits and Systems Magazine - Q3 2019 - 22
IEEE Circuits and Systems Magazine - Q3 2019 - 23
IEEE Circuits and Systems Magazine - Q3 2019 - 24
IEEE Circuits and Systems Magazine - Q3 2019 - 25
IEEE Circuits and Systems Magazine - Q3 2019 - 26
IEEE Circuits and Systems Magazine - Q3 2019 - 27
IEEE Circuits and Systems Magazine - Q3 2019 - 28
IEEE Circuits and Systems Magazine - Q3 2019 - 29
IEEE Circuits and Systems Magazine - Q3 2019 - 30
IEEE Circuits and Systems Magazine - Q3 2019 - 31
IEEE Circuits and Systems Magazine - Q3 2019 - 32
IEEE Circuits and Systems Magazine - Q3 2019 - 33
IEEE Circuits and Systems Magazine - Q3 2019 - 34
IEEE Circuits and Systems Magazine - Q3 2019 - 35
IEEE Circuits and Systems Magazine - Q3 2019 - 36
IEEE Circuits and Systems Magazine - Q3 2019 - 37
IEEE Circuits and Systems Magazine - Q3 2019 - 38
IEEE Circuits and Systems Magazine - Q3 2019 - 39
IEEE Circuits and Systems Magazine - Q3 2019 - 40
IEEE Circuits and Systems Magazine - Q3 2019 - 41
IEEE Circuits and Systems Magazine - Q3 2019 - 42
IEEE Circuits and Systems Magazine - Q3 2019 - 43
IEEE Circuits and Systems Magazine - Q3 2019 - 44
IEEE Circuits and Systems Magazine - Q3 2019 - 45
IEEE Circuits and Systems Magazine - Q3 2019 - 46
IEEE Circuits and Systems Magazine - Q3 2019 - 47
IEEE Circuits and Systems Magazine - Q3 2019 - 48
IEEE Circuits and Systems Magazine - Q3 2019 - Cover3
IEEE Circuits and Systems Magazine - Q3 2019 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q1
https://www.nxtbookmedia.com