IEEE Circuits and Systems Magazine - Q1 2020 - 31

MTT-S Int. Microwave Workshop Series on Intelligent Radio for Future
Personal Terminals (IMWS-IRFPT), Daejeon, 2011, pp. 1-2. doi: 10.1109/
IMWS2.2011.6027202.
[27] S. Salhi, H. Escid, and A. Slimane, "Design of high speed transimpedance amplifier for optical communication systems," in Proc. Seminar
Detection Systems Architectures and Technologies (DAT), Algiers, 2017,
pp. 1-5. doi: 10.1109/DAT.2017.7889191.
[28] M. Rakowski, M. Ingels, K. De Meyer, M. Steyaert, P. Absil, and J. Van
Campenhout, "Highly sensitive, low-power, 10-20Gb/s transimpedance
amplifier based on cascaded CMOS inverter gain stages," in Proc.
Optical Interconnects Conf., San Diego, 2014, pp. 115-116. doi: 10.1109/
OIC.2014.6886106.
[29] M. Atef, H. Chen, and H. Zimmermann, "10 Gb/s inverter based cascode transimpedance amplifier in 40nm CMOS technology," in Proc. IEEE
16th Int. Symp. Design and Diagnostics of Electronic Circuits & Systems
(DDECS), pp. 72-75, 2013. doi: 10.1109/DDECS.2013.6549791.
[30] A. Atef, M. Atef, M. Abbas, and E. E. M. Khaled, "High-sensitivity
regulated inverter cascode transimpedance amplifier for near infrared
spectroscopy," in Proc. 4th Int. Japan-Egypt Conf. Electronics, Communications and Computers (JEC-ECC), Cairo, 2016, pp. 99-102. doi: 10.1109/
JEC-ECC.2016.7518977.
[31] A. Atef, M. Atef, M. Abbas, E. E. M. Khaled, and G. Wang, "Fully
integrated wide dynamic range optical receiver for near infrared spectroscopy," Microelectron. J., vol. 85, pp. 92-97, Mar. 2019. doi: 10.1016/j.
mejo.2019.01.009.
[32] D. Abd-elrahman, M. Atef, M. Abbas, and M. Abdelgawad, "Current-reuse transimpedance amplifier with active inductor," in Proc.
Int. Symp. Signals, Circuits and Systems (ISSCS), Iasi, 2015, pp. 1-4. doi:
10.1109/ISSCS.2015.7203946.
[33] D. Abd-Elrahman, M. Atef, M. Abbas, and M. Abdelgawad, "Low
power transimpedance amplifier using current reuse with dual feedback," in Proc. IEEE Int. Conf. Electronics, Circuits, and Systems (ICECS),
Cairo, 2015, pp. 244-247. doi: 10.1109/ICECS.2015.7440294.
[34] A. Atef, M. Atef, M. Abbas, and E. E. M. Khaled, "1.44 mW and 60
dB dynamic range optical receiver for near infrared spectroscopy," in
Proc. IEEE 28th Int. Conf. Microelectronics (ICM), Cairo, 2016, pp. 21-24.
doi: 10.1109/ICM.2016.7847897.
[35] C. Toumazou and S. M. Park, "Wideband low noise CMOS transimpedance amplifier for gigahertz operation," Electron. Lett., vol. 32,
no. 13, pp. 1194-1196, 1996. doi: 10.1049/el:19960814.
[36] S. M. Park and H.-J. Yoo, "1.25-Gb/s regulated cascode CMOS
transimpedance amplifier for gigabit ethernet applications," IEEE
J. Solid-State Circuits, vol. 39, no. 1, pp. 112-121, 2004. doi: 10.1109/
JSSC.2003.820884.
[37] H.-L. Chen, C.-H. Chen, W.-B. Yang, and J.-S. Chiang, "Inductorless
CMOS receiver front-end circuits for 10-Gb/s optical communications,"
Tamkang J. Sci. Eng., vol. 12, no. 4, pp. 449-458, 2009.
[38] W.-Z. Chen and S.-H. Huang, "A 2.5 Gbps CMOS fully integrated optical receicer with lateral PIN detector," in Proc. IEEE Custom Integrated Circuits Conf., San Jose, 2007, pp. 293-296. doi: 10.1109/CICC.2007.4405736.
[39] M. Atef, M. Wang, and G. Wang, "A fully integrated high-sensitivity
wide dynamic range PPG sensor with an integrated photodiode and an
automatic dimming control LED driver," IEEE Sensors J., vol. 18, no. 2,
pp. 652-659, 2018. doi: 10.1109/JSEN.2017.2777740.
[40] H. F. Achigui, M. Sawan, and C. J. Fayomi, "A monolithic based NIRS
front-end wireless sensor," Microelectron. J., vol. 39, no. 10, pp. 1209-
1217, 2008. doi: 10.1016/j.mejo.2008.01.055.
[41] C. Kolacinski et al., "The integrated transmitter and receiver modules for pulse oximeter system," in Proc. MIXDES - 23rd Int. Conf. Mixed
Design of Integrated Circuits and Systems, Poland, 2016, pp. 243-248. doi:
10.1109/MIXDES.2016.7529740.
[42] Y. Li, C. C. Poon, and Y.-T. Zhang, "Analog integrated circuits design
for processing physiological signals," IEEE Rev. Biomed. Eng., vol. 3,
pp. 93-105, Sept. 2010. doi: 10.1109/RBME.2010.2082521.
[43] G. A. Rincon-Mora, "Active capacitor multiplier in miller-compensated circuits," IEEE J. Solid-State Circuits, vol. 35, no. 1, pp. 26-32, 2000.
doi: 10.1109/4.818917.
[44] A. K. Wong, K.-P. Pun, Y.-T. Zhang, and K. N. Leung, "A low-power
CMOS front-end for photoplethysmographic signal acquisition with
robust DC photocurrent rejection," IEEE Trans. Biomed. Circuits Syst.,
vol. 2, no. 4, pp. 280-288, 2008. doi: 10.1109/TBCAS.2008.2003429.
[45] R. Yun and V. J. Koomson, "A novel CMOS frequency-mixing transimpedance amplifier for frequency domain near infrared spectrosco-

FIRST QUARTER 2020

py," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 1, pp. 84-94, 2013.
doi: 10.1109/TCSI.2012.2215701.
[46] R. Yun and V. M. Joyner, "A monolithically integrated phase-sensitive optical sensor for frequency-domain NIR spectroscopy," IEEE Sensors J., vol. 10, no. 7, pp. 1234-1242, 2010. doi: 10.1109/JSEN.2010.2044502.
[47] M. Atef and D. Abd-elrahman, "2.5 Gbit/s compact transimpedance
amplifier using active inductor in 130 nm CMOS technology," in Proc.
21st Int. Conf. Mixed Design of Integrated Circuits & Systems (MIXDES),
Lublin, 2014, pp. 103-107. doi: 10.1109/MIXDES.2014.6872165.
[48] S. S. Mohan, M. D. M. Hershenson, S. P. Boyd, and T. H. Lee, "Bandwidth extension in CMOS with optimized on-chip inductors," IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 346-355, 2000. doi: 10.1109/4.826816.
[49] O. Ghasemi, "Cs-based TIAs using inductive feedback approach
in 90 nm CMOS," in Proc. IEEE 28th Canadian Conf. Electrical and Computer Engineering (CCECE), Halifax, 2015, pp. 1162-1167. doi: 10.1109/
CCECE.2015.7129439.
[50] M. Atef and H. Zimmermann, "Optoelectronic Circuits in Nanometer
CMOS Technology," Springer, 2016, pp. 217-240.
[51] K. Park and W.-S. Oh, "A 40-Gb/s 310-fJ/b inverter-based CMOS
optical receiver front-end," IEEE Photon. Technol. Lett., vol. 27, no. 18,
pp. 1931-1933, 2015. doi: 10.1109/LPT.2015.2447283.
[52] M. B. Frank and R. A. Richetta, "Implementing enhanced CMOS inverter based optical transimpedance amplifier," U.S. Patent 9 571 045,
Feb. 14, 2017.
[53] M. Atef, F. Aznar, S. Schidl, A. Polzer, W. Gaberl, and H. Zimmermann, "8 Gbits/s inductorless transimpedance amplifier in 90 nm CMOS
technology," Analog Integr. Circuits Signal Process., vol. 79, no. 1, pp.
27-36, 2014. doi: 10.1007/s10470-013-0242-4.
[54] L. Liu, J. Zou, N. Ma, Z. Zhu, and Y. Yang, "A CMOS transimpedance
amplifier with high gain and wide dynamic range for optical fiber sensing system," Optik - Int. J. Light Electron Opt., vol. 126, no. 15, pp. 1389-
1393, 2015. doi: 10.1016/j.ijleo.2015.04.021.
[55] E. Sackinger, "The transimpedance limit," IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 57, no. 8, pp. 1848-1856, 2010. doi: 10.1109/TCSI
.2009.2037847.
[56] K. Park, W. Oh, B.-Y. Choi, J.-W. Han, and S. Park, "A 4-channel 12.5 Gb/s
common-gate transimpedance amplifier array for DVI/HDMI applications," in Proc. IEEE Int. Symp. Circuits and Systems, 2007, pp. 2192-2195.
doi: 10.1109/ISCAS.2007.378609.
[57] C. Talarico, G. Agrawal, and J. W. Roveda, "A 60 dBO 2.9 GHz 0.18 μm
CMOS transimpedance amplifier for a fiber optic receiver application,"
in Proc. IEEE 57th Int. Midwest Symp. Circuits and Systems (MWSCAS),
College Station, 2014, pp. 181-184. doi: 10.1109/MWSCAS.2014.6908382.
[58] M. Atef and H. Zimmermann, Optical Communication Over Plastic Optical Fibers: Integrated Optical Receiver Technology, vol. 172. Springer, 2012.
[59] P. Kyu-Sang et al., "A 10-Gb/s optical receiver front-end with 5-mW
transimpedance amplifier," in Proc. IEEE Asian Solid State Circuits Conf.
(A-SSCC), Beijing, 2010, pp. 115-116. doi: 10.1109/ASSCC.2010.5716566.
[60] Y. Dong and K. Martin, "A monolithic 3.125 Gbps fiber optic receiver
front-end for POF applications in 65 nm CMOS," in Proc. IEEE Custom
Integrated Circuits Conf. (CICC), San Jose, 2011, pp. 1-4. doi: 10.1109/
CICC.2011.6055362.
[61] J. Carvalho, L. B. Oliveira, J. P. Oliveira, J. Goes, and M. M. Silva,
"A balun transimpedance amplifier with adjustable gain for integrated
SPO2 optic sensors," in Proc. 19th Int. Conf. Mixed Design of Integrated
Circuits and Systems (MIXDES), Warsaw, 2012, pp. 178-182.
[62] W.-Z. Chen and C.-H. Lu, "Design and analysis of a 2.5-Gbps optical
receiver analog front-end in a 0.35-μm digital CMOS technology," IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 53, no. 5, pp. 977-983, 2006. doi:
10.1109/TCSI.2005.862068.
[63] M. de Medeiros Silva and L. B. Oliveira, "Regulated common-gate
transimpedance amplifier designed to operate with a silicon photo-multiplier at the input," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61, no. 3,
pp. 725-735, 2014. doi: 10.1109/TCSI.2013.2283992.
[64] U. Bansal and M. Gupta, "High bandwidth transimpedance amplifier using FGMOS for low voltage operation," Integration, VLSI J., vol. 60,
pp. 153-159, Jan. 2017. doi: 10.1016/j.vlsi.2017.09.001.
[65] L. B. S. Samuel, T. Y. Sern, T. B. Kumar, Y. K. Seng, L. Zhichao, and Y.
Xiaopeng, "An inductorless transimpedance amplifier design for 10 Gb/s
optical communication using 0.18-μm CMOS," in Proc. Int. Symp. Integrated
Circuits (ISIC), Singapore, 2016, pp. 1-4. doi: 10.1109/ISICIR.2016.7829701.
[66] E. Sackinger, Broadband Circuits for Optical Fiber Communication.
Wiley, 2005.

IEEE CIRCUITS AND SYSTEMS MAGAZINE

31



IEEE Circuits and Systems Magazine - Q1 2020

Table of Contents for the Digital Edition of IEEE Circuits and Systems Magazine - Q1 2020

Contents
IEEE Circuits and Systems Magazine - Q1 2020 - Cover1
IEEE Circuits and Systems Magazine - Q1 2020 - Cover2
IEEE Circuits and Systems Magazine - Q1 2020 - Contents
IEEE Circuits and Systems Magazine - Q1 2020 - 2
IEEE Circuits and Systems Magazine - Q1 2020 - 3
IEEE Circuits and Systems Magazine - Q1 2020 - 4
IEEE Circuits and Systems Magazine - Q1 2020 - 5
IEEE Circuits and Systems Magazine - Q1 2020 - 6
IEEE Circuits and Systems Magazine - Q1 2020 - 7
IEEE Circuits and Systems Magazine - Q1 2020 - 8
IEEE Circuits and Systems Magazine - Q1 2020 - 9
IEEE Circuits and Systems Magazine - Q1 2020 - 10
IEEE Circuits and Systems Magazine - Q1 2020 - 11
IEEE Circuits and Systems Magazine - Q1 2020 - 12
IEEE Circuits and Systems Magazine - Q1 2020 - 13
IEEE Circuits and Systems Magazine - Q1 2020 - 14
IEEE Circuits and Systems Magazine - Q1 2020 - 15
IEEE Circuits and Systems Magazine - Q1 2020 - 16
IEEE Circuits and Systems Magazine - Q1 2020 - 17
IEEE Circuits and Systems Magazine - Q1 2020 - 18
IEEE Circuits and Systems Magazine - Q1 2020 - 19
IEEE Circuits and Systems Magazine - Q1 2020 - 20
IEEE Circuits and Systems Magazine - Q1 2020 - 21
IEEE Circuits and Systems Magazine - Q1 2020 - 22
IEEE Circuits and Systems Magazine - Q1 2020 - 23
IEEE Circuits and Systems Magazine - Q1 2020 - 24
IEEE Circuits and Systems Magazine - Q1 2020 - 25
IEEE Circuits and Systems Magazine - Q1 2020 - 26
IEEE Circuits and Systems Magazine - Q1 2020 - 27
IEEE Circuits and Systems Magazine - Q1 2020 - 28
IEEE Circuits and Systems Magazine - Q1 2020 - 29
IEEE Circuits and Systems Magazine - Q1 2020 - 30
IEEE Circuits and Systems Magazine - Q1 2020 - 31
IEEE Circuits and Systems Magazine - Q1 2020 - 32
IEEE Circuits and Systems Magazine - Q1 2020 - 33
IEEE Circuits and Systems Magazine - Q1 2020 - 34
IEEE Circuits and Systems Magazine - Q1 2020 - 35
IEEE Circuits and Systems Magazine - Q1 2020 - 36
IEEE Circuits and Systems Magazine - Q1 2020 - 37
IEEE Circuits and Systems Magazine - Q1 2020 - 38
IEEE Circuits and Systems Magazine - Q1 2020 - 39
IEEE Circuits and Systems Magazine - Q1 2020 - 40
IEEE Circuits and Systems Magazine - Q1 2020 - 41
IEEE Circuits and Systems Magazine - Q1 2020 - 42
IEEE Circuits and Systems Magazine - Q1 2020 - 43
IEEE Circuits and Systems Magazine - Q1 2020 - 44
IEEE Circuits and Systems Magazine - Q1 2020 - 45
IEEE Circuits and Systems Magazine - Q1 2020 - 46
IEEE Circuits and Systems Magazine - Q1 2020 - 47
IEEE Circuits and Systems Magazine - Q1 2020 - 48
IEEE Circuits and Systems Magazine - Q1 2020 - 49
IEEE Circuits and Systems Magazine - Q1 2020 - 50
IEEE Circuits and Systems Magazine - Q1 2020 - 51
IEEE Circuits and Systems Magazine - Q1 2020 - 52
IEEE Circuits and Systems Magazine - Q1 2020 - 53
IEEE Circuits and Systems Magazine - Q1 2020 - 54
IEEE Circuits and Systems Magazine - Q1 2020 - 55
IEEE Circuits and Systems Magazine - Q1 2020 - 56
IEEE Circuits and Systems Magazine - Q1 2020 - 57
IEEE Circuits and Systems Magazine - Q1 2020 - 58
IEEE Circuits and Systems Magazine - Q1 2020 - 59
IEEE Circuits and Systems Magazine - Q1 2020 - 60
IEEE Circuits and Systems Magazine - Q1 2020 - Cover3
IEEE Circuits and Systems Magazine - Q1 2020 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q1
https://www.nxtbookmedia.com