IEEE Circuits and Systems Magazine - Q2 2020 - 29

[31] R. Poore, Overview on phase noise and jitter Agilent Technologies, 2001. [Online]. Available: http://cp.literature.agilent.com/litweb/
pdf/5990-3108EN.pdf
[32] "Understanding and Characterizing Timing Jitter application note
55W-16146-6," Tektronix, Apr. 2017. [Online]. Available: https://www.tek
.com/primer/understanding-and-characterizing-timing-jitter-primer
[33] D. Sullivan, D. Allan, D. Howe, and F. Walls, "Characterization of
clocks and oscillators," Nat. Inst. Standards and Technology, Technical
Note 1337, 1990.
[34] G. Gaderer, A. Nagy, P. Loschmidt, and T. Sauter, "Achieving a realistic notion of time in discrete event simulation," Int. J. Distrib. Sensor
Netw., vol. 2011, pp. 1-11, Jul. 2011.
[35] A. Mahmood, R. Exel, H. Trsek, and T. Sauter, "Clock synchronization Over IEEE 802.11: A survey of methodologies and protocols," IEEE
Trans. Ind. Informat., vol. 13, no. 2, pp. 907-920, April 2017. doi: 10.1109/
TII.2016.2629669.
[36] M. A. Lombradi, Ch. 17, "Fundamentals of time and frequency," in
The Mechatronics Handbook, Boca Raton, FL: CRC, 2002.
[37] J. R. Vig, "Quartz Crystal resonators and oscillators for frequency control and timing applications: A tutorial," Jan. 2000. [Online]. Available: https://
www.am1.us/wp-content/uploads/Documents/U11625_VIG-TUTORIAL.pdf
[38] L. Xiu, "The concept of time-average-frequency and mathematical
analysis of flying-adder frequency synthesis architecture," IEEE Circuits
Syst. Mag., vol. 8, no. 3, pp. 27-51, 2008. doi: 10.1109/MCAS.2008.928421.
[39] H. Mair and L. Xiu, "Architecture of high-performance frequency
and phase synthesis," IEEE J. Solid-State Circuits, vol. 35, no. 6, pp. 835-
846, 2000. doi: 10.1109/4.845187.
[40] L. Xiu and Z. You, "A 'flying-adder' architecture of frequency and phase
synthesis with scalability," IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 10, no. 5, pp. 637-649, 2002. doi: 10.1109/TVLSI.2002.801607.
[41] L. Xiu, W. T. Lin, and K. Lee, "A flying-adder fractional-divider based
integer-N PLL: the 2nd generation flying-adder PLL as clock generator
for SoC," IEEE J. Solid-State Circuits, vol. 48, no. 2, pp. 441-455, Feb. 2013.
doi: 10.1109/JSSC.2012.2223931.
[42] L. Xiu, "Direct period synthesis for achieving sub-ppm frequency
resolution through time average frequency: The principle, the experimental demonstration, and its application in digital communication,"
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 23, no. 7, pp. 1335-
1344, 2015. doi: 10.1109/TVLSI.2014.2334591.
[43] L. Xiu and P. L. Chen, "A Reconfigurable TAF-DPS frequency synthesizer on FPGA achieving 2 ppb frequency granularity and two-cycle
switching speed," IEEE Trans. Ind. Electron., vol. 64, no. 2, pp. 1233-1240,
Feb. 2017. doi: 10.1109/TIE.2016.2611490.
[44] P. Sotiriadis, "Theory of flying-adder frequency synthesizers,
Part I: Modeling, signals' periods and output average frequency," IEEE
Trans. Circuits Syst. I, vol. 57, no. 8, pp. 1935-1948, 2010. vol doi: 10.1109/
TCSI.2009.2039834.
[45] P. Sotiriadis, "Theory of flying-adder frequency synthesizers, Part
II: Time and frequency domain properties of the output signal," IEEE
Trans. Circuits Syst. I, vol. 57, no. 8, pp. 1949-1963, 2010. doi: 10.1109/
TCSI.2009.2039835.
[46] P. Sotiriadis, "Exact spectrum and time: Domain output of flyingadder frequency synthesizers," IEEE Trans. Ultrason., Ferroelect., Freq.
Control, vol. 57, no. 9, pp. 1926-1935, 2010. doi: 10.1109/TUFFC.2010.1640.
[47] T. Rapinoja et al., "A digital frequency synthesizer for cognitive radio spectrum sensing applications," IEEE Trans. Microw. Theory Tech.,
vol. 58, pp. 1339-1348, 2010. doi: 10.1109/TMTT.2010.2042859.
[48] S. A. Talwalkar, "Quantization error spectra structure of a DTC synthesizer via the DFT axis scaling property," IEEE Trans. Circuits Syst. I,
vol. 59, no. 6, pp. 1242-1250, 2012. doi: 10.1109/TCSI.2011.2173384.
[49] S. A. Talwalkar, "Digital-to-time synthesizers: separating delay line
error spurs and quantization error spurs," IEEE Trans. Circuits Syst. I,
vol. 60, no. 10, pp. 2597-2605, 2013. doi: 10.1109/TCSI.2013.2249152.
[50] TMS320DM816x DaVinci Digital Media Processors Technical Reference Manual, Texas Instruments Inc., 2013.
[51] L. Xiu, "Clock technology: The next frontier," IEEE Circuit Syst. Mag.,
vol. 17, no. 2, pp. 27-46, 2017. doi: 10.1109/MCAS.2017.2689519.
[52] L. Xiu, "Time Moore: Exploiting Moore's law from time perspective," IEEE Solid State Circuits Mag., vol. 11, no. 1, pp. 39-55, 2019. doi:
10.1109/MSSC.2018.2882285.
[53] L. Xiu and X. Wei, "A 0.02 ppb/step Wide Range DCXO Based on
Time-Average-Frequency: Demonstration on FPGA," in Proc. ISCAS2019,
May 2019.
SECOND QUARTER 2020 		

[54] R. L. Kent, "The voltage-controlled crystal oscillator, its capabilities and limitations," in Proc. 19th Annu. Symp. Frequency Control, 1965,
pp. 642-654.
[55] J. Helle, "VCXO theory and practice," in Proc. 29th Annu. Symp. Frequency Control, 1975, pp. 300-307.
[56] O. Ishii, T. Shibata, and T. Ohshima, "High frequency fundamental
VCXO for SDH system," in Proc. IEEE Int. Frequency Control Symp., 1996,
pp. 714-721.
[57] M. D. Tsai et al., "A temperature-compensated low-noise digitallycontrolled crystal oscillator for multi-standard applications," in Proc.
IEEE Radio Frequency Integrated Circuits Symp., 2008.
[58] D. Griffith, F. Dülger, G. Feygin, A. N. Mohieldin, P. Vallur, "A 65nm
CMOS DCXO system for generating 38.4MHz and a real time clock from
a single crystal in 0.09mm," in Proc. IEEE Radio Frequency Integrated
Circuits Symp., 2010, pp.321-324.
[59] T. H. Tran et al., "A low-ppm digitally controlled crystal oscillator
compensated by a new 0.19-mm2 time-domain temperature sensor," IEEE
Sensors J., vol. 17, no. 1, pp. 51-62, 2017. doi: 10.1109/JSEN.2016.2623744.
[60] A. Partridge, H. C. Lee, P. Hagelin, V. Menon, "We know that MEMS
is replacing quartz. But why? And why now?" in Proc. Joint European
Frequency and Time Forum and Int. Frequency Control Symp. (EFTF/IFC),
2013, pp. 411-416.
[61] G. Chance et al., "Integrated MEMS oscillator for cellular transceivers," in Proc. IEEE Int. Frequency Control Symp., (FCS), 2014, pp. 1-3.
[62] K. Kobayashi et al., "High-performance DSP-TCXO using twin-crystal
oscillator," in Proc. IEEE Int. Frequency Control Symp., (FCS), 2014, pp. 1-4.
[63] M. Petrowski and R. Clark, "DSP-based oscillator technology greatly simplifies timing architectures in multi-service platforms," in Proc.
Optical Fiber Communication Conf., 2006.
[64] D. Loy, GPS-Linked High Accuracy NTP Time Processor for Distributed
Fault-Tolerant Real-Time Systems. Austria: Vienna Univ. of Technology,
1996.
[65] M. Horauer, Clock synchronization in distributed systems. Austria:
University of Technology Vienna, 2004.
[66] M. Buevich, N. Rajagopal, and A. Rowe, "Hardware assisted clock
synchronization for real-time sensor networks," in Proc. - Real-Time
Syst. Symp., 2013, pp. 268-277.
[67] A. Rowe, V. Gupta, and R. R. Rajkumar, "Low-power clock synchronization using electromagnetic energy radiating from ac power lines,"
in Proc. 7th ACM Conf. Embedded Networked Sensor Systems, SenSys '09,
New York, 2009, pp. 211-224. doi: 10.1145/1644038.1644060.
[68] F. Schmuck and F. Cristian, "Continuous clock amortization need
not affect the precision of a clock synchronization algorithm," in Proc.
9th Annu. ACM Symp. Principles Distributed Computing, New York, 1990,
pp. 133-143. doi: 10.1145/93385.93411.
[69] "SiT9102 datasheet, rev. 1.52," SiTime Corp., 2010. [Online]. Available: www.sitime.com
[70] S. Farahvash, C. Quek, M. Mak, "A temperature compensated digitally-controlled crystal Pierce oscillator for wireless applications," in
Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), 2008, pp. 352-619.
[71] K. Sundaresan, P. E. Allen, and F. Ayazi, "Process and temperature
compensation in a 7-MHz CMOS clock oscillator," IEEE J. Solid-State Circuits, vol. 41, no. 2, pp. 433-442, Feb. 2006. doi: 10.1109/JSSC.2005.863149.
[72] P. Park, D. Ruffieux, and K. A. A. Makinwa, "A Thermistor-based
temperature sensor for a real-time clock with ± 2 ppm frequency stability," IEEE J. of Solid-State Circuits, vol. 50, no. 7, pp. 1571-1580, 2015. doi:
10.1109/JSSC.2015.2417806.
[73] T. H. Tran et al., "A Low-ppm digitally controlled crystal oscillator compensated by a new 0.19-mm2 time-domain temperature sensor,"
IEEE Sensors J., vol. 17, no. 1, pp. 51-62, 2017. doi: 10.1109/JSEN.2016.
2623744.
[74] Y. Watanabe, K. Ozaki, S. Goka, and H. Sekimoto, "Ultra-stable
OCXO using dual-mode crystal oscillator," in Proc. IEEE Int. Frequency
Control Symp., 2000, pp. 459-462.
[75] K. Kobayashi et al., "High-performance DSP-TCXO using twin-crystal oscillator," in Proc. IEEE Int. Frequency Control Symp., (FCS), pp. 1-4,
2014.
[76] A. Ballato and T. Lukaszek, "Higher order temperature coefficients
of frequency of mass-loaded piezoelectric crystal plates," in Proc. 29th
Ann. Symp. Frequency Control, 1975, pp. 10-25.
[77] L. Xiu, From Frequency to Time-Average-Frequency: A Paradigm Shift
in the Design of Electronic System. New York: Wiley/IEEE Press, May
2015.
IEEE CIRCUITS AND SYSTEMS MAGAZINE	

29


http://212.235.190.162/literatura/Razno/SRK2016/priprava/5990-3108EN.pdf http://212.235.190.162/literatura/Razno/SRK2016/priprava/5990-3108EN.pdf https://www.tek.com/primer/understanding-and-characterizing-timing-jitter-primer https://www.tek.com/primer/understanding-and-characterizing-timing-jitter-primer http://www.am1.us/wp-content/uploads/Documents/U11625_VIG-TUTORIAL.pdf http://www.am1.us/wp-content/uploads/Documents/U11625_VIG-TUTORIAL.pdf http://www.sitime.com

IEEE Circuits and Systems Magazine - Q2 2020

Table of Contents for the Digital Edition of IEEE Circuits and Systems Magazine - Q2 2020

Contents
IEEE Circuits and Systems Magazine - Q2 2020 - Cover1
IEEE Circuits and Systems Magazine - Q2 2020 - Cover2
IEEE Circuits and Systems Magazine - Q2 2020 - Contents
IEEE Circuits and Systems Magazine - Q2 2020 - 2
IEEE Circuits and Systems Magazine - Q2 2020 - 3
IEEE Circuits and Systems Magazine - Q2 2020 - 4
IEEE Circuits and Systems Magazine - Q2 2020 - 5
IEEE Circuits and Systems Magazine - Q2 2020 - 6
IEEE Circuits and Systems Magazine - Q2 2020 - 7
IEEE Circuits and Systems Magazine - Q2 2020 - 8
IEEE Circuits and Systems Magazine - Q2 2020 - 9
IEEE Circuits and Systems Magazine - Q2 2020 - 10
IEEE Circuits and Systems Magazine - Q2 2020 - 11
IEEE Circuits and Systems Magazine - Q2 2020 - 12
IEEE Circuits and Systems Magazine - Q2 2020 - 13
IEEE Circuits and Systems Magazine - Q2 2020 - 14
IEEE Circuits and Systems Magazine - Q2 2020 - 15
IEEE Circuits and Systems Magazine - Q2 2020 - 16
IEEE Circuits and Systems Magazine - Q2 2020 - 17
IEEE Circuits and Systems Magazine - Q2 2020 - 18
IEEE Circuits and Systems Magazine - Q2 2020 - 19
IEEE Circuits and Systems Magazine - Q2 2020 - 20
IEEE Circuits and Systems Magazine - Q2 2020 - 21
IEEE Circuits and Systems Magazine - Q2 2020 - 22
IEEE Circuits and Systems Magazine - Q2 2020 - 23
IEEE Circuits and Systems Magazine - Q2 2020 - 24
IEEE Circuits and Systems Magazine - Q2 2020 - 25
IEEE Circuits and Systems Magazine - Q2 2020 - 26
IEEE Circuits and Systems Magazine - Q2 2020 - 27
IEEE Circuits and Systems Magazine - Q2 2020 - 28
IEEE Circuits and Systems Magazine - Q2 2020 - 29
IEEE Circuits and Systems Magazine - Q2 2020 - 30
IEEE Circuits and Systems Magazine - Q2 2020 - 31
IEEE Circuits and Systems Magazine - Q2 2020 - 32
IEEE Circuits and Systems Magazine - Q2 2020 - 33
IEEE Circuits and Systems Magazine - Q2 2020 - 34
IEEE Circuits and Systems Magazine - Q2 2020 - 35
IEEE Circuits and Systems Magazine - Q2 2020 - 36
IEEE Circuits and Systems Magazine - Q2 2020 - 37
IEEE Circuits and Systems Magazine - Q2 2020 - 38
IEEE Circuits and Systems Magazine - Q2 2020 - 39
IEEE Circuits and Systems Magazine - Q2 2020 - 40
IEEE Circuits and Systems Magazine - Q2 2020 - 41
IEEE Circuits and Systems Magazine - Q2 2020 - 42
IEEE Circuits and Systems Magazine - Q2 2020 - 43
IEEE Circuits and Systems Magazine - Q2 2020 - 44
IEEE Circuits and Systems Magazine - Q2 2020 - 45
IEEE Circuits and Systems Magazine - Q2 2020 - 46
IEEE Circuits and Systems Magazine - Q2 2020 - 47
IEEE Circuits and Systems Magazine - Q2 2020 - 48
IEEE Circuits and Systems Magazine - Q2 2020 - Cover3
IEEE Circuits and Systems Magazine - Q2 2020 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q1
https://www.nxtbookmedia.com