IEEE Circuits and Systems Magazine - Q2 2020 - 46

a Fellow of the IEEE in 1996 and a Fellow of the American
Association for the Advancement of Science (AAAS) in 2017.
References
[1] P. Kanerva, Sparse Distributed Memory. MIT press, 1988.
[2] P. Smolensky, "Tensor product variable binding and the representation of symbolic structures in connectionist systems," Artif. Intell., vol.
46, no. 1-2, pp. 159-216, 1990. doi: 10.1016/0004-3702(90)90007-M.
[3] T. A. Plate, "Holographic reduced representations," IEEE Trans. Neural Netw., vol. 6, no. 3, pp. 623-641, 1995. doi: 10.1109/72.377968.
[4] P. Kanerva et al., "Fully distributed representation," PAT, vol. 1, no.
5, p. 10,000, 1997.
[5] D. A. Rachkovskij and E. M. Kussul, "Binding and normalization
of binary sparse distributed representations by context-dependent
-thinning," Neural Comput., vol. 13, no. 2, pp. 411-452, 2001. doi: 10.1162/
089976601300014592.
[6] R. W. Gayler, "Multiplicative binding, representation operators &
analogy (workshop poster)," 1998.
[7] K. Schlegel, P. Neubert, and P. Protzel, A comparison of vector symbolic architectures. 2020. [Online] Available: arXiv:2001.11797
[8] M. Hersche, J. d R. Millán, L. Benini, and A. Rahimi, Exploring
em--bedding methods in binary hyperdimensional computing: A case
study for motor-imagery based brain-computer interfaces. 2018. arXiv:1812.05705
[9] A. Rahimi et al., "High-dimensional computing as a nanoscalable
paradigm," IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 64, no. 9, pp. 2508-2521, 2017. doi: 10.1109/TCSI.2017.2705051.
[10] R. E. Bryant and D. R. O'Hallaron, "Computer systems: A programmer's perspective," 2015.
[11] A. Patyk-Łon
´ ska, M. Czachor, and D. Aerts, "A comparison of geometric analogues of holographic reduced representations, original holographic reduced representations and binary spatter codes," in Proc. 2011
Federated Conf. Computer Science and Information Systems (FedCSIS), IEEE,
2011, pp. 221-228.
[12] P. J. Olver and C. Shakiban, Applied Linear Algebra. Springer, 2018.
[13] S. Datta, R. A. Antonio, A. R. Ison, and J. M. Rabaey, "A programmable hyper-dimensional processor architecture for human-centric IoT,"
IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 9, no. 3, pp. 439-452, 2019.
doi: 10.1109/JETCAS.2019.2935464.
[14] D. Widdows and T. Cohen, "Reasoning with vectors: A continuous
model for fast robust inference," Logic J. IGPL, vol. 23, no. 2, pp. 141-173,
2015. doi: 10.1093/jigpal/jzu028.
[15] M. Schmuck, L. Benini, and A. Rahimi, "Hardware optimizations
of dense binary hyperdimensional computing: Rematerialization of hypervectors, binarized bundling, and combinational associative memory," ACM J. Emerg. Technol. Comput. Syst., vol. 15, no. 4, pp. 1-25, 2019.
doi: 10.1145/3314326.
[16] P. Kanerva, "Hyperdimensional computing: An introduction to computing in distributed representation with high-dimensional random vectors,"
Cogn. Comput., vol. 1, no. 2, pp. 139-159, 2009. doi: 10.1007/s12559-009-9009-8.
[17] D. Rachkovskij, "Linear classifiers based on binary distributed representations," Int. J. Inform. Theories Appl., 2007.
[18] E. M. Kussul, L. M. Kasatkina, D. A. Rachkovskij, and D. C. Wunsch,
"Application of random threshold neural networks for diagnostics
of micro machine tool condition," in Proc. 1998 IEEE Int. Joint Conf.
Neural Networks. IEEE World Congress Computational Intelligence
(Cat. No. 98CH36227), vol. 1. IEEE, 1998, pp. 241-244. doi: 10.1109/IJCNN.
1998.682270.
[19] E. Kussul, "On image texture recognition by associative-projective
neurocomputer," in Proc. ANNIE'91 Conf, Intelligent Engineering Systems
through Artificial Neural Networks, ASME Press, 1991, pp. 453-458.
[20] D. Rachkovskij and T. Fedoseyeva, "On audio signals recognition
by multilevel neural network," in Proc. Int. Symp. Neural Networks and
Neural Computing, vol. 90, 1990, pp. 281-283.
[21] A. Rahimi, P. Kanerva, and J. M. Rabaey, "A robust and energy-efficient classifier using brain-inspired hyperdimensional computing," in
Proc. 2016 Int. Symp. Low Power Electronics and Design, pp. 64-69. doi:
10.1145/2934583.2934624.
[22] B. Logan et al., "Mel frequency cepstral coefficients for music modeling," ISMIR, vol. 270, pp. 1-11, 2000.
[23] A. Rahimi, S. Benatti, P. Kanerva, L. Benini, and J. M. Rabaey, "Hyperdimensional biosignal processing: A case study for EMG-based

46 	

hand gesture recognition," in Proc. 2016 IEEE Int. Conf. Rebooting Computing, pp. 1-8. doi: 10.1109/ICRC.2016.7738683.
[24] D. Kleyko and E. Osipov, "Brain-like classifier of temporal patterns,"
in Proc. 2014 Int. Conf. Computer and Information Sciences, pp. 1-6. doi:
10.1109/ICCOINS.2014.6868349.
[25] M. Imani et al., "QuantHD: A quantization framework for hyperdimensional computing," in Proc. IEEE Trans.Computer-Aided Design of
Integrated Circuits and Systems, 2019. doi: 10.1109/TCAD.2019.2954472.
[26] A. Rahimi, P. Kanerva, J. R. Millán, and J. M. Rabaey, "Hyperdimensional computing for noninvasive brain-computer interfaces: Blind and
one-shot classification of EEG error-related potentials," in Proc. 10th
EAI Int. Conf. Bio-inspired Information and Communications Technologies, 2017. doi: 10.4108/eai.22-3-2017.152397.
[27] A. Moin et al., "An EMG gesture recognition system with flexible
high-density sensors and brain-inspired high-dimensional classifier,"
in Proc. 2018 IEEE Int. Symp. Circuits and Systems (ISCAS), pp. 1-5. doi:
10.1109/ISCAS.2018.8351613.
[28] M. Imani, D. Kong, A. Rahimi, and T. Rosing, "VoiceHD: Hyperdimensional computing for efficient speech recognition," in Proc. 2017 IEEE Int.
Conf. Rebooting Computing (ICRC), pp. 1-8. doi: 10.1109/ICRC.2017.8123650.
[29] M. Imani, C. Huang, D. Kong, and T. Rosing, "Hierarchical hyperdimensional computing for energy efficient classification," in Proc. 2018
55th ACM/ESDA/IEEE Design Automation Conference (DAC), pp. 1-6. doi:
10.1109/DAC.2018.8465708.
[30] A. Joshi, J. T. Halseth, and, and P. Kanerva, "Language geometry using random indexing," in Proc. Int. Symp. Quantum Interaction, Springer,
2016, pp. 265-274. doi: 10.1007/978-3-319-52289-0_21.
[31] M. Imani, T. Nassar, A. Rahimi, and T. Rosing, "HDNA: Energy-efficient DNA sequencing using hyperdimensional computing," in Proc.
2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI). IEEE, 2018, pp. 271-274. doi: 10.1109/BHI.2018.8333421.
[32] D. Kleyko, A. Rahimi, D. A. Rachkovskij, E. Osipov, and J. M. Rabaey, "Classification and recall with binary hyperdimensional computing: Tradeoffs in choice of density and mapping characteristics," IEEE
Trans. Neural Netw. Learn. Syst., vol. 29, no. 12, pp. 5880-5898, 2018. doi:
10.1109/TNNLS.2018.2814400.
[33] R. W. Gayler, Vector symbolic architectures answer jackendoff's challenges for cognitive neuroscience. 2004. [Online]. Available: arXiv:cs/
0412059
[34] A. Rahimi, P. Kanerva, L. Benini, and J. M. Rabaey, "Efficient biosignal processing using hyperdimensional computing: Network templates
for combined learning and classification of ExG signals," Proc. IEEE, vol.
107, no. 1, pp. 123-143, 2018. doi: 10.1109/JPROC.2018.2871163.
[35] M. Imani, J. Messerly, F. Wu, W. Pi, and T. Rosing, "A binary learning
framework for hyperdimensional computing," in Proc. 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 126-131.
doi: 10.23919/DATE.2019.8714821.
[36] D. A. Rachkovskij, "Representation and processing of structures
with binary sparse distributed codes," IEEE Trans. Knowl. Data Eng.,
vol. 13, no. 2, pp. 261-276, 2001. doi: 10.1109/69.917565.
[37] M. Imani, S. Salamat, B. Khaleghi, M. Samragh, F. Koushanfar, and
T. Rosing, "SparseHD: Algorithm-hardware co-optimization for efficient
high-dimensional computing," in Proc. 2019 IEEE 27th Annu. Int. Symp.
Field-Programmable Custom Computing Machines (FCCM), pp. 190-198.
doi: 10.1109/FCCM.2019.00034.
[38] S. Salamat, M. Imani, B. Khaleghi, and T. Rosing, "F5-hd: Fast flexible FPGA-based framework for refreshing hyperdimensional computing," in Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays,
pp. 53-62. doi: 10.1145/3289602.3293913.
[39] G. Karunaratne, M. L. Gallo, G. Cherubini, L. Benini, A. Rahimi, and
A. Sebastian, In-memory hyperdimensional computing. 2019. [Online].
Available: arXiv:abs/1906.01548
[40] A. Rahimi, T. F. Wu, H. Li, J. M. Rabaey, H.-S. P. Wong, M. M. Shulaker,
and S. Mitra, Hyperdimensional computing nanosystem. 2018. [Online].
Available: arXiv:1811.09557
[41] T. F. Wu et al., "Hyperdimensional computing exploiting carbon
nanotube FETs, resistive RAM, and their monolithic 3D integration,"
IEEE J. Solid-State Circuits, vol. 53, no. 11, pp. 3183-3196, 2018. doi:
10.1109/JSSC.2018.2870560.
[42] H. Li et al., "Hyperdimensional computing with 3D VRRAM in-memory kernels: Device-architecture co-design for energy-efficient, errorresilient language recognition," in Proc. 2016 IEEE Int. Electron Devices
Meeting, pp. 16-11. doi: 10.1109/IEDM.2016.7838428.

IEEE CIRCUITS AND SYSTEMS MAGAZINE 		

SECOND QUARTER 2020



IEEE Circuits and Systems Magazine - Q2 2020

Table of Contents for the Digital Edition of IEEE Circuits and Systems Magazine - Q2 2020

Contents
IEEE Circuits and Systems Magazine - Q2 2020 - Cover1
IEEE Circuits and Systems Magazine - Q2 2020 - Cover2
IEEE Circuits and Systems Magazine - Q2 2020 - Contents
IEEE Circuits and Systems Magazine - Q2 2020 - 2
IEEE Circuits and Systems Magazine - Q2 2020 - 3
IEEE Circuits and Systems Magazine - Q2 2020 - 4
IEEE Circuits and Systems Magazine - Q2 2020 - 5
IEEE Circuits and Systems Magazine - Q2 2020 - 6
IEEE Circuits and Systems Magazine - Q2 2020 - 7
IEEE Circuits and Systems Magazine - Q2 2020 - 8
IEEE Circuits and Systems Magazine - Q2 2020 - 9
IEEE Circuits and Systems Magazine - Q2 2020 - 10
IEEE Circuits and Systems Magazine - Q2 2020 - 11
IEEE Circuits and Systems Magazine - Q2 2020 - 12
IEEE Circuits and Systems Magazine - Q2 2020 - 13
IEEE Circuits and Systems Magazine - Q2 2020 - 14
IEEE Circuits and Systems Magazine - Q2 2020 - 15
IEEE Circuits and Systems Magazine - Q2 2020 - 16
IEEE Circuits and Systems Magazine - Q2 2020 - 17
IEEE Circuits and Systems Magazine - Q2 2020 - 18
IEEE Circuits and Systems Magazine - Q2 2020 - 19
IEEE Circuits and Systems Magazine - Q2 2020 - 20
IEEE Circuits and Systems Magazine - Q2 2020 - 21
IEEE Circuits and Systems Magazine - Q2 2020 - 22
IEEE Circuits and Systems Magazine - Q2 2020 - 23
IEEE Circuits and Systems Magazine - Q2 2020 - 24
IEEE Circuits and Systems Magazine - Q2 2020 - 25
IEEE Circuits and Systems Magazine - Q2 2020 - 26
IEEE Circuits and Systems Magazine - Q2 2020 - 27
IEEE Circuits and Systems Magazine - Q2 2020 - 28
IEEE Circuits and Systems Magazine - Q2 2020 - 29
IEEE Circuits and Systems Magazine - Q2 2020 - 30
IEEE Circuits and Systems Magazine - Q2 2020 - 31
IEEE Circuits and Systems Magazine - Q2 2020 - 32
IEEE Circuits and Systems Magazine - Q2 2020 - 33
IEEE Circuits and Systems Magazine - Q2 2020 - 34
IEEE Circuits and Systems Magazine - Q2 2020 - 35
IEEE Circuits and Systems Magazine - Q2 2020 - 36
IEEE Circuits and Systems Magazine - Q2 2020 - 37
IEEE Circuits and Systems Magazine - Q2 2020 - 38
IEEE Circuits and Systems Magazine - Q2 2020 - 39
IEEE Circuits and Systems Magazine - Q2 2020 - 40
IEEE Circuits and Systems Magazine - Q2 2020 - 41
IEEE Circuits and Systems Magazine - Q2 2020 - 42
IEEE Circuits and Systems Magazine - Q2 2020 - 43
IEEE Circuits and Systems Magazine - Q2 2020 - 44
IEEE Circuits and Systems Magazine - Q2 2020 - 45
IEEE Circuits and Systems Magazine - Q2 2020 - 46
IEEE Circuits and Systems Magazine - Q2 2020 - 47
IEEE Circuits and Systems Magazine - Q2 2020 - 48
IEEE Circuits and Systems Magazine - Q2 2020 - Cover3
IEEE Circuits and Systems Magazine - Q2 2020 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q1
https://www.nxtbookmedia.com