IEEE Circuits and Systems Magazine - Q3 2020 - 64
[2] Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence. Berlin:
Springer-Verlag, 1984.
[3] D. M. Abrams and S. H. Strogatz, "Chimera states for coupled oscillators," Phys. Rev. Lett, vol. 93, no. 17, p. 174102, 2004. doi: 10.1103/
PhysRevLett.93.174102.
[4] O. E. Omel'chenko, "The mathematics behind chimera states," Nonlinearity, vol. 31, no. 5, p. R121, 2018. doi: 10.1088/1361-6544/aaaa07.
[5] J. Gómez-Gardenes, S. Gómez, A. Arenas, and Y. Moreno, "Explosive
synchronization transitions in scale-free networks," Phys. Rev. Lett.,
vol. 106, no. 12, p. 128701, 2011. doi: 10.1103/PhysRevLett.106.128701.
[6] N. Lotfi, F. A. Rodrigues, and A. H. Darooneh, "The role of community structure on the nature of explosive synchronization," Chaos, vol.
28, no. 3, p. 033102, 2018. doi: 10.1063/1.5005616.
[7] T. Menara, G. Baggio, D. Bassett, and F. Pasqualetti, "Stability
conditions for cluster synchronization in networks of heterogeneous
Kuramoto oscillators," IEEE Trans. Control Netw. Syst., vol. 7, no. 1, pp.
302-314, 2020. doi: 10.1109/TCNS.2019.2903914.
[8] C. Chen, S. Liu, X. Q. Shi, H. Chaté, and Y. Wu, "Weak synchronization
and large-scale collective oscillation in dense bacterial suspensions,"
Nature, vol. 542, no. 7640, p. 210, 2017. doi: 10.1038/nature20817.
[9] G. Jongen, J. Anemller, D. Bollé, A. C. C. Coolen, and C. Perez-Vicente,
"Coupled dynamics of fast spins and slow exchange interactions in the
XY spin glass," J. Phys. A, vol. 34, no. 19, p. 3957, 2001. doi: 10.1088/03054470/34/19/302.
[10] T. D. M. Peron and F. A. Rodrigues, "Collective behavior in financial
markets," Europhys. Lett., vol. 96, no. 4, p. 48004, 2011. doi: 10.1209/02955075/96/48004.
[11] F. Dörfler, M. Chertkov, and F. Bullo, "Synchronization in complex
oscillator networks and smart grids," Proc. Natl. Acad. Sci., vol. 110, no.
6, pp. 2005-2010, 2013. doi: 10.1073/pnas.1212134110.
[12] N. E. Leonard, D. A. Paley, F. Lekien, R. Sepulchre, D. M. Fratantoni, and R. E. Davis, "Collective motion, sensor networks, and ocean
sampling," Proc. IEEE, vol. 95, no. 1, pp. 48 -74, 2007. doi: 10.1109/
JPROC.2006.887295.
[13] D. A. Paley, N. E. Leonard, R. Sepulchre, D. Grunbaum, and J. K. Parrish, "Oscillator models and collective motion," IEEE Control Syst. Mag.,
vol. 27, no. 4, pp. 89-105, 2007. doi: 10.1109/MCS.2007.384123.
[14] R. Sepulchre, D. A. Paley, and N. E. Leonard, "Stabilization of planar
collective motion: All-to-all communication," IEEE Trans. Autom. Control, vol. 52, no. 5, pp. 811-824, 2007. doi: 10.1109/TAC.2007.898077.
[15] R. Sepulchre, D. A. Paley, and N. E. Leonard, "Stabilization of planar collective motion with limited communication," IEEE Trans. Autom.
Control, vol. 53, no. 3, pp. 706-719, 2008. doi: 10.1109/TAC.2008.919857.
[16] D. J. Klein, P. Lee, K. A. Morgansen, and T. Javidi, "Integration of
communication and control using discrete time Kuramoto models for
multivehicle coordination over broadcast networks," IEEE J. Sel. Areas
Commun., vol. 26, no. 4, pp. 695-705, 2008. doi: 10.1109/JSAC.2008.080511.
[17] S. Napora and D. A. Paley, "Observer-based feedback control for
stabilization of collective motion," IEEE Trans. Control Syst. Technol.,
vol. 21, no. 5, pp. 1846-1857, 2013. doi: 10.1109/TCST.2012.2205252.
[18] G. S. Seyboth, J. Wu, J. Qin, C. Yu, and F. Allgöwer, "Collective circular motion of unicycle type vehicles with nonidentical constant velocities," IEEE Trans. Control Netw. Syst., vol. 1, no. 2, pp. 167-176, 2014. doi:
10.1109/TCNS.2014.2316995.
[19] Z. Sun, H. G. de Marina, G. S. Seyboth, B. D. Anderson, and C. Yu,
"Circular formation control of multiple unicycle-type agents with nonidentical constant speeds," IEEE Trans. Control Syst. Technol., vol. 27, no.
1, pp. 192-205, 2018. doi: 10.1109/TCST.2017.2763938.
[20] P. Rao and X. Li, "Cooperative formation of self-propelled vehicles
with directed communications," IEEE Trans. Circuits Syst. II: Exp. Briefs,
vol. 67, no. 2, pp. 315-319, 2020. doi: 10.1109/TCSII.2019.2904640.
[21] A. Pluchino, V. Latora, and A. Rapisarda, "Changing opinions in a
changing world: A new perspective in sociophysics," Int. J. Mod. Phys. C,
vol. 16, no. 4, pp. 515-531, 2005. doi: 10.1142/S0129183105007261.
[22] K. Vasudevan, M. Cavers, and A. Ware, "Earthquake sequencing:
Chimera states with Kuramoto model dynamics on directed graphs,"
Nonlin. Process. Geophys., vol. 22, no. 5, pp. 499-512, 2015. doi: 10.5194/
npg-22-499-2015.
[23] T. Kotwal, X. Jiang, and D. M. Abrams, "Connecting the Kuramoto
model and the chimera state," Phys. Rev. Lett., vol. 119, no. 26, p. 264101,
2017. doi: 10.1103/PhysRevLett.119.264101.
[24] K. P. O'Keeffe, H. Hong, and S. H. Strogatz, "Oscillators that sync
and swarm," Nat. Commun., vol. 8, no. 1, p. 1504, 2017.
64
[25] M. M. Danziger, I. Bonamassa, S. Boccaletti, and S. Havlin, "Dynamic interdependence and competition in multilayer networks," Nat. Phys.,
vol. 15, no. 2, p. 178, 2019. doi: 10.1038/s41567-018-0343-1.
[26] S. Jafarpour, E. Y. Huang, and F. Bullo, "Synchronization of Kuramoto oscillators: Inverse Taylor expansions," SIAM J. Control Optim.,
vol. 57, no. 5, pp. 3388-3412, 2019. doi: 10.1137/18M1216262.
[27] B. Wei, F. Xiao, and Y. Shi, "Synchronization in Kuramoto oscillator
networks with sampled-data updating law," IEEE Trans. Cybern., to be
published. doi: 10.1109/TCYB.2019.2940987.
[28] F. A. Rodrigues, T. K. D. Peron, P. Ji, and J. Kurths, "The Kuramoto
model in complex networks," Phys. Rep, vol. 610, pp. 1-98, 2016. doi:
10.1016/j.physrep.2015.10.008.
[29] F. Dörfler and F. Bullo, "Synchronization in complex networks of
phase oscillators: A survey," Automatica, vol. 50, no. 6, pp. 1539-1564,
2014. doi: 10.1016/j.automatica.2014.04.012.
[30] S. H. Strogatz, "From Kuramoto to Crawford: Exploring the onset of
synchronization in populations of coupled oscillators," Physica D, vol.
143, nos. 1-4, pp. 1-20, 2000. doi: 10.1016/S0167-2789(00)00094-4.
[31] J. A. Acebrón, L. L. Bonilla, C. J. P. Vicente, F. Ritort, and R. Spigler,
"The Kuramoto model: A simple paradigm for synchronization phenomena," Rev. Mod. Phys., vol. 77, no. 1, pp. 137, 2005. doi: 10.1103/RevModPhys.77.137.
[32] A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou,
"Synchronization in complex networks," Phys. Rep., vol. 469, no. 3, pp.
93-153, 2008. doi: 10.1016/j.physrep.2008.09.002.
[33] S. N. Dorogovtsev, A. V. Goltsev, and J. F. Mendes, "Critical phenomena in complex networks," Rev. Mod. Phys., vol. 80, no. 4, p. 1275, 2008.
doi: 10.1103/RevModPhys.80.1275.
[34] M. Verwoerd and O. Mason, "On computing the critical coupling coefficient for the Kuramoto model on a complete bipartite graph," SIAM J.
Appl. Dyn. Syst., vol. 8, no. 1, pp. 417-453, 2009. doi: 10.1137/080725726.
[35] F. Dörfler and F. Bullo, "On the critical coupling for Kuramoto oscillators," SIAM J. Appl. Dyn. Syst., vol. 10, no. 3, pp. 1070-1099, 2011. doi:
10.1137/10081530X.
[36] S. Y. Ha, S. E. Noh, and J. Park, "Synchronization of Kuramoto oscillators with adaptive couplings," SIAM J. Appl. Dyn. Syst., vol. 15, no. 1,
pp. 162-194, 2016. doi: 10.1137/15M101484X.
[37] S. Y. Ha, J. Lee, Z. Li, and J. Park, "Emergent dynamics of Kuramoto
oscillators with adaptive couplings: conservation law and fast learning," SIAM J. Appl. Dyn. Syst., vol. 17, no. 2, pp. 1560-1588, 2018. doi:
10.1137/17M1124048.
[38] E. A. Martens, E. Barreto, S. H. Strogatz, E. Ott, P. So, and T. M.
Antonsen, "Exact results for the Kuramoto model with a bimodal frequency distribution," Phys. Rev. E, vol. 79, no. 2, p. 026204, 2009. doi:
10.1103/PhysRevE.79.026204.
[39] G. B. Ermentrout, "Synchronization in a pool of mutually coupled
oscillators with random frequencies," J. Math. Biol., vol. 22, no. 1, pp.
1-9, 1985.
[40] V. A. Maksimenko et al., "Excitation and suppression of chimera
states by multiplexing," Phys. Rev. E, vol. 94, no. 5, p. 052205, 2016. doi:
10.1103/PhysRevE.94.052205.
[41] X. Zhang, S. Boccaletti, S. Guan, and Z. Liu, "Explosive synchronization in adaptive and multilayer networks," Phys. Rev. Lett, vol. 114, no. 3,
p. 038701, 2015. doi: 10.1103/PhysRevLett.114.038701.
[42] X. Jiang, M. Li, Z. Zheng, Y. Ma, and L. Ma, "Effect of externality in
multiplex networks on one-layer synchronization," J. Korean Phys. Soc.,
vol. 66, no. 11, pp. 1777-1782, 2015. doi: 10.3938/jkps.66.1777.
[43] V. Nicosia, P. S. Skardal, A. Arenas, and V. Latora, "Collective phenomena emerging from the interactions between dynamical processes
in multiplex networks," Phys. Rev. Lett., vol. 118, no. 13, p. 138,302, 2017.
doi: 10.1103/PhysRevLett.118.138302.
[44] A. D. Kachhvah and S. Jalan, "Multiplexing induced explosive synchronization in Kuramoto oscillators with inertia," Europhys. Lett., vol.
119, no. 6, p. 60,005, 2017. doi: 10.1209/0295-5075/119/60005.
[45] N. Chopra and M. W. Spong, "On exponential synchronization of
Kuramoto oscillators," IEEE Trans. Autom. Control, vol. 54, no. 2, pp.
353-357, 2009. doi: 10.1109/TAC.2008.2007884.
[46] S. Y. Ha, T. Ha, and J. H. Kim, "On the complete synchronization of
the Kuramoto phase model," Physica D, vol. 239, no. 17, pp. 1692-1700,
2010. doi: 10.1016/j.physd.2010.05.003.
[47] Z. Lin, B. Francis, and M. Maggiore, "State agreement for continuous-time coupled nonlinear systems," SIAM J. Control Optim., vol. 46,
no. 1, pp. 288-307, 2007. doi: 10.1137/050626405.
IEEE CIRCUITS AND SYSTEMS MAGAZINE
THIRD QUARTER 2020
IEEE Circuits and Systems Magazine - Q3 2020
Table of Contents for the Digital Edition of IEEE Circuits and Systems Magazine - Q3 2020
Contents
IEEE Circuits and Systems Magazine - Q3 2020 - Cover1
IEEE Circuits and Systems Magazine - Q3 2020 - Cover2
IEEE Circuits and Systems Magazine - Q3 2020 - Contents
IEEE Circuits and Systems Magazine - Q3 2020 - 2
IEEE Circuits and Systems Magazine - Q3 2020 - 3
IEEE Circuits and Systems Magazine - Q3 2020 - 4
IEEE Circuits and Systems Magazine - Q3 2020 - 5
IEEE Circuits and Systems Magazine - Q3 2020 - 6
IEEE Circuits and Systems Magazine - Q3 2020 - 7
IEEE Circuits and Systems Magazine - Q3 2020 - 8
IEEE Circuits and Systems Magazine - Q3 2020 - 9
IEEE Circuits and Systems Magazine - Q3 2020 - 10
IEEE Circuits and Systems Magazine - Q3 2020 - 11
IEEE Circuits and Systems Magazine - Q3 2020 - 12
IEEE Circuits and Systems Magazine - Q3 2020 - 13
IEEE Circuits and Systems Magazine - Q3 2020 - 14
IEEE Circuits and Systems Magazine - Q3 2020 - 15
IEEE Circuits and Systems Magazine - Q3 2020 - 16
IEEE Circuits and Systems Magazine - Q3 2020 - 17
IEEE Circuits and Systems Magazine - Q3 2020 - 18
IEEE Circuits and Systems Magazine - Q3 2020 - 19
IEEE Circuits and Systems Magazine - Q3 2020 - 20
IEEE Circuits and Systems Magazine - Q3 2020 - 21
IEEE Circuits and Systems Magazine - Q3 2020 - 22
IEEE Circuits and Systems Magazine - Q3 2020 - 23
IEEE Circuits and Systems Magazine - Q3 2020 - 24
IEEE Circuits and Systems Magazine - Q3 2020 - 25
IEEE Circuits and Systems Magazine - Q3 2020 - 26
IEEE Circuits and Systems Magazine - Q3 2020 - 27
IEEE Circuits and Systems Magazine - Q3 2020 - 28
IEEE Circuits and Systems Magazine - Q3 2020 - 29
IEEE Circuits and Systems Magazine - Q3 2020 - 30
IEEE Circuits and Systems Magazine - Q3 2020 - 31
IEEE Circuits and Systems Magazine - Q3 2020 - 32
IEEE Circuits and Systems Magazine - Q3 2020 - 33
IEEE Circuits and Systems Magazine - Q3 2020 - 34
IEEE Circuits and Systems Magazine - Q3 2020 - 35
IEEE Circuits and Systems Magazine - Q3 2020 - 36
IEEE Circuits and Systems Magazine - Q3 2020 - 37
IEEE Circuits and Systems Magazine - Q3 2020 - 38
IEEE Circuits and Systems Magazine - Q3 2020 - 39
IEEE Circuits and Systems Magazine - Q3 2020 - 40
IEEE Circuits and Systems Magazine - Q3 2020 - 41
IEEE Circuits and Systems Magazine - Q3 2020 - 42
IEEE Circuits and Systems Magazine - Q3 2020 - 43
IEEE Circuits and Systems Magazine - Q3 2020 - 44
IEEE Circuits and Systems Magazine - Q3 2020 - 45
IEEE Circuits and Systems Magazine - Q3 2020 - 46
IEEE Circuits and Systems Magazine - Q3 2020 - 47
IEEE Circuits and Systems Magazine - Q3 2020 - 48
IEEE Circuits and Systems Magazine - Q3 2020 - 49
IEEE Circuits and Systems Magazine - Q3 2020 - 50
IEEE Circuits and Systems Magazine - Q3 2020 - 51
IEEE Circuits and Systems Magazine - Q3 2020 - 52
IEEE Circuits and Systems Magazine - Q3 2020 - 53
IEEE Circuits and Systems Magazine - Q3 2020 - 54
IEEE Circuits and Systems Magazine - Q3 2020 - 55
IEEE Circuits and Systems Magazine - Q3 2020 - 56
IEEE Circuits and Systems Magazine - Q3 2020 - 57
IEEE Circuits and Systems Magazine - Q3 2020 - 58
IEEE Circuits and Systems Magazine - Q3 2020 - 59
IEEE Circuits and Systems Magazine - Q3 2020 - 60
IEEE Circuits and Systems Magazine - Q3 2020 - 61
IEEE Circuits and Systems Magazine - Q3 2020 - 62
IEEE Circuits and Systems Magazine - Q3 2020 - 63
IEEE Circuits and Systems Magazine - Q3 2020 - 64
IEEE Circuits and Systems Magazine - Q3 2020 - 65
IEEE Circuits and Systems Magazine - Q3 2020 - 66
IEEE Circuits and Systems Magazine - Q3 2020 - 67
IEEE Circuits and Systems Magazine - Q3 2020 - 68
IEEE Circuits and Systems Magazine - Q3 2020 - Cover3
IEEE Circuits and Systems Magazine - Q3 2020 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q1
https://www.nxtbookmedia.com