IEEE Circuits and Systems Magazine - Q4 2020 - 26

[27] R. Shea, Eds., Principles of Transistor Circuits. London: Chapman
& Hall, 1953. [Online]. Available: https://books.google.com/books?id=
7cAGMwEACAAJ
[28] J. B. Oakes, " Analysis of junction transistor audio oscillator circuits, " Proc. IRE, vol. 42, no. 8, pp. 1235-1238, Aug. 1954. doi: 10.1109/
JRPROC.1954.274790.
[29] E. Keonjian, " Stable transistor oscillator, " Elect. Eng., vol. 74, no. 8,
pp. 672-675, Aug. 1955. doi: 10.1109/EE.1955.6439510.
[30] A. G. Milnes, " Transistor circuits and applications, " J. Inst. Elect.
Eng., vol. 3, no. 35, pp. 592-594, Nov. 1957. doi: 10.1049/jiee-3.1957.0292.
[31] C. P. John W. M. Rogers, Integrated GHz Voltage Controlled Oscillators. Norwood, MA: Artech House, 2010, p. 540.
[32] A. Abbasi, " Systemization of sinusoidal feedback oscillators (a
teaching aid), " IEEE Trans. Educ., vol. E-7, no. 1, pp. 23-30, Mar. 1964.
doi: 10.1109/TE.1964.4321836.
[33] U. L. Rohde and A. M. Apte, " Everything you always wanted to know
about Colpitts oscillators [applications note], " IEEE Microw. Mag., vol.
17, no. 8, pp. 59-76, Aug. 2016. doi: 10.1109/MMM.2016.2561498.
[34] B. R. Nag, " A two-state device with two inductively coupled Colpitts
oscillators, " Radio Eng., J. Br. Inst., vol. 24, no. 1, pp. 45-52, July 1962.
doi: 10.1049/jbire.1962.0073.
[35] Y. Watanabe, H. Sekimoto, S. Goka, and I. Niimi, " A dual mode oscillator based on narrow-band crystal oscillators with resonator filters, "
in Proc. Int. Frequency Control Symp., May 1997, pp. 932-937.
[36] J. P. Jordan, " Design of electronic heaters for induction heating, " Proc. IRE, vol. 32, no. 8, pp. 449-452, Aug. 1944. doi: 10.1109/JRPROC.1944.232403.
[37] W. S. Chung and K. Watanabe, " A linear temperature-to-frequency converter using an integrable Colpitts oscillator, " IEEE Trans.
Instrum. Meas., vol. IM-34, no. 4, pp. 534-537, Dec 1985. doi: 10.1109/
TIM.1985.4315398.
[38] S.-L. Jang, Y.-H. Chuang, Y.-C. Wang, and S.-H. Lee, " A low power
and low phase noise complementary Colpitts quadrature VCO, " 2005.
[39] R. Aparicio and A. Hajimiri, " A noise-shifting differential Colpitts
VCO, " IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1728-1736, Dec. 2002.
doi: 10.1109/JSSC.2002.804354.
[40] Z. Kashani and A. Nabavi, " A low-phase-noise millimeter wave
quadrature VCO in 180nm CMOS process, " in Proc. 2nd Int. Conf.
Knowledge-Based Eng. Innovation (KBEI), Nov. 2015, pp. 1190-1193. doi:
10.1109/KBEI.2015.7436217.
[41] M. Adnan and E. Afshari, " A 105GHz VCO with 9.5 output power using coupled Colpitts oscillators in 65nm bulk CMOS, " in Proc. IEEE Radio
Frequency Integr. Circuits Symp. (RFIC), June 2013, pp. 239-242.
[42] F. R. de Sousa, M. B. Machado, and C. Galup-Montoro, " A 20 mv Colpitts oscillator powered by a thermoelectric generator, " in Proc. IEEE
Int. Symp. Circuits Syst., May 2012, pp. 2035-2038.
[43] R. E. Rottava, S. C. Câmara, F. R. de Sousa, and R. N. de Lima, " Ultralow-power, ultra-low-voltage 2.12 GHz Colpitts oscillator using inductive gate degeneration, " in Proc. IEEE 11th Int. New Circuits Syst. Conf.
(NEWCAS), June 2013, pp. 1-4. doi: 10.1109/NEWCAS.2013.6573614.
[44] A. Hajimiri and T. H. Lee, " A general theory of phase noise in electrical oscillators, " IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179-194,
Feb. 1998. doi: 10.1109/4.658619.
[45] I. Chlis, D. Pepe, and D. Zito, " Analyses of phase noise reduction
techniques in CMOS Colpitts oscillator topology at the mm-waves: Inductive degeneration and optimum current density, " in Proc. 26th Irish
and Syst. Conf. (ISSC), June 2015, pp. 1-4. doi: 10.1109/ISSC.2015.7163757.
[46] D. B. Leeson, " A simple model of feedback oscillator noise spectrum, " Proc. IEEE, vol. 54, no. 2, pp. 329-330, Feb. 1966. doi: 10.1109/
PROC.1966.4682.
[47] X. Huang, F. Tan, W. Wei, and W. Fu, " A revisit to phase noise model of Leeson, " in Proc. IEEE Int. Frequency Control Symp. Joint 21st Eur.
Frequency Time Forum, May 2007, pp. 238-241. doi: 10.1109/FREQ.2007.
4319072.
[48] J. Nallatamby, M. Prigent, M. Camiade, and J. Obregon, " Phase noise in
oscillators -Leeson formula revisited, " IEEE Trans. Microw. Theory Techn.,
vol. 51, no. 4, pp. 1386-1394, Apr. 2003. doi: 10.1109/TMTT.2003.809187.
[49] B. Razavi, " A study of phase noise in CMOS oscillators, " IEEE J. SolidState Circuits, vol. 31, no. 3, pp. 331-343, Mar. 1996. doi: 10.1109/4.494195.
[50] E. Hegazi, H. Sjoland, and A. A. Abidi, " A filtering technique to lower
LC oscillator phase noise, " IEEE J. Solid-State Circuits, vol. 36, no. 12, pp.
1921-1930, Dec. 2001. doi: 10.1109/4.972142.
[51] A. A. Abidi, How Phase Noise Appears in Oscillators. Boston: Springer-Verlag, 1997, pp. 271-290.

26 	

[52] C.-C. Ho, C.-W. Kuo, C.-C. Hsiao, and Y.-J. Chan, " A 2.4 GHz low
phase noise VCO fabricated by 0.18/mu/m pMOS technologies, " in
Proc. Int. Symp. VLSI Technol., Syst. Appl. Proc. Tech. Papers. (IEEE Cat.
No.03TH8672), Oct. 2003, pp. 144-146.
[53] D. Ham and A. Hajimiri, " Concepts and methods in optimization
of integrated LC VCOs, " IEEE J. Solid-State Circuits, vol. 36, no. 6, pp.
896-909, June 2001. doi: 10.1109/4.924852.
[54] I. Chlis, D. Pepe, and D. Zito, " Analyses of phase noise reduction
techniques in CMOS Colpitts oscillator topology at the mm-waves:
Noise filter and optimum current density, " in Proc. 11th Conf. Ph.D. Research Microelectron. Electron. (PRIME), June 2015, pp. 204-207. doi:
10.1109/PRIME.2015.7251370.
[55] J. Chen, B. Guo, F. Zhao, Y. Wang, and G. Wen, " A low-voltage highswing Colpitts VCO with inherent tapped capacitors based dynamic
body bias technique, " in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May
2017, pp. 1-4. doi: 10.1109/ISCAS.2017.8050374.
[56] I. Chlis, D. Pepe, and D. Zito, " Comparative analyses of phase noise
in differential oscillator topologies in 28 nm CMOS technology, " in Proc.
10th Conf. Ph.D. Research Microelectron. Electron. (PRIME), June 2014,
pp. 1-4. doi: 10.1109/PRIME.2014.6872664.
[57] P. Andreani, X. Wang, L. Vandi, and A. Fard, " A study of phase noise
in Colpitts and lc-tank CMOS oscillators, " IEEE J. Solid-State Circuits, vol.
40, no. 5, pp. 1107-1118, May 2005. doi: 10.1109/JSSC.2005.845991.
[58] A. Viessmann, F. Damitz, R. Franke, and R. Tempel, " Comparison
of a fully integrated differential voltage controlled Colpitts oscillator
to the cross-coupled oscillator topology, " in Proc. Dig. Papers. Topical
Meeting Silicon Monolithic Integr. Circuits RF Syst., Jan. 2006, p. 4.
[59] J. R. Wg and A. Ballato, Frequency Control Devices. New York: Academic , 1999.
[60] E. Vittoz, Low-Power Crystal and MEMS Oscillators; The Experience
of Watch Developments, vol. 5., 2010.
[61] R. J. Matthys, Crystal Oscillator Circuits. Melbourne, FL: Krieger,
1992.
[62] A. O. Gruen, H. E. Plait, " A study of crystal oscillator circuits, " Defense Technical Information Center, 1957.
[63] J. Groszkowski, WARSZA W: P W N. Polish Scientific Publishers,
1964.
[64] J. Q. Lu and Y. Tsuzuki, " Analysis of start-up characteristics of crystal oscillators, " in Proc. 45th Annu. Symp. Frequency Control, May 1991,
pp. 360-363.
[65] M. Toki and Y. Tsuzuki, " Analysis of start-up characteristics of
CMOS crystal oscillators, " in Proc. 1992 IEEE Frequency Control Symp.,
May 1992, pp. 448-452.
[66] K. Hosaka, S. Harase, S. Izumiya, and T. Adachi, " A cascode crystal
oscillator suitable for integrated circuits, " in Proc. IEEE Int. Frequency
Control Symp. PDA Exhib. (Cat. No.02CH37234), 2002, pp. 610-614.
[67] Y. Tsuzuki, T. Adachi, and J. W. Zhang, " Fast start-up crystal oscillator circuits, " in Proc. IEEE Int. Frequency Control Symp. (49th Annu.
Symp.), May 1995, pp. 565-568.
[68] N. Nomura, Y. Aoyagi, and Y. Sekine, " Colpitts-type oscillator for
high frequency application, " in Proc. IEEE Int. Frequency Control Symp.
Expo., Aug. 2004, pp. 748-751.
[69] Y. Chen, K. Mouthaan, and B. L. Ooi, " A novel technique to enhance
the negative resistance for Colpitts oscillators by parasitic cancellation, " in Proc. IEEE Conf. Electron Devices and Solid-State Circuits, Dec.
2007, pp. 425-428. doi: 10.1109/EDSSC.2007.4450153.
[70] F. G. R. Rockstuhl, " A method of analysis of fundamental and overtone crystal-oscillator circuits, " Proc. Inst. Elect. Eng., III, Radio Commun.
Eng., vol. 99, no. 62, pp. 377-388, Nov. 1952. doi: 10.1049/pi-3.1952.0085.
[71] M. ElBarkouky, G. Vandersteen, P. Wambacq, and Y. Rolain, " A
7 GHz FBAR overtone-based oscillator, " in Proc. Eur. Microw. Conf.
(EuMC), Sept. 2009, pp. 318-321.
[72] M. ElBarkouky, P. Wambacq, and Y. Rolain, " A low-power 6.3 GHz
FBAR overtone-based oscillator in 90 nm CMOS technology, " in Proc.
Ph.D Research Microelectron. Electron. Conf., July 2007, pp. 61-64. doi:
10.1109/RME.2007.4401811.
[73] L. Dauphinee, M. Copeland, and P. Schvan, " A balanced 1.5 GHz
voltage controlled oscillator with an integrated LC resonator, " in Proc.
IEEE Int. Solids-State Circuits Conf. Dig. Tech. Papers, Feb. 1997, pp. 390-
391.
[74] X. Li, S. Shekhar, and D. J. Allstot, " Gm-boosted common-gate LNA
and differential Colpitts VCO/QVCO in 0.18-um CMOS, " IEEE J. SolidState Circuits, vol. 40, no. 12, pp. 2609-2619, Dec. 2005. doi: 10.1109/
JSSC.2005.857426.

IEEE CIRCUITS AND SYSTEMS MAGAZINE 		

FOURTH QUARTER 2020


https://books.google.com.co/books?id=7cAGMwEACAAJ&redir_esc=y https://books.google.com.co/books?id=7cAGMwEACAAJ&redir_esc=y

IEEE Circuits and Systems Magazine - Q4 2020

Table of Contents for the Digital Edition of IEEE Circuits and Systems Magazine - Q4 2020

Contents
IEEE Circuits and Systems Magazine - Q4 2020 - Cover1
IEEE Circuits and Systems Magazine - Q4 2020 - Cover2
IEEE Circuits and Systems Magazine - Q4 2020 - Contents
IEEE Circuits and Systems Magazine - Q4 2020 - 2
IEEE Circuits and Systems Magazine - Q4 2020 - 3
IEEE Circuits and Systems Magazine - Q4 2020 - 4
IEEE Circuits and Systems Magazine - Q4 2020 - 5
IEEE Circuits and Systems Magazine - Q4 2020 - 6
IEEE Circuits and Systems Magazine - Q4 2020 - 7
IEEE Circuits and Systems Magazine - Q4 2020 - 8
IEEE Circuits and Systems Magazine - Q4 2020 - 9
IEEE Circuits and Systems Magazine - Q4 2020 - 10
IEEE Circuits and Systems Magazine - Q4 2020 - 11
IEEE Circuits and Systems Magazine - Q4 2020 - 12
IEEE Circuits and Systems Magazine - Q4 2020 - 13
IEEE Circuits and Systems Magazine - Q4 2020 - 14
IEEE Circuits and Systems Magazine - Q4 2020 - 15
IEEE Circuits and Systems Magazine - Q4 2020 - 16
IEEE Circuits and Systems Magazine - Q4 2020 - 17
IEEE Circuits and Systems Magazine - Q4 2020 - 18
IEEE Circuits and Systems Magazine - Q4 2020 - 19
IEEE Circuits and Systems Magazine - Q4 2020 - 20
IEEE Circuits and Systems Magazine - Q4 2020 - 21
IEEE Circuits and Systems Magazine - Q4 2020 - 22
IEEE Circuits and Systems Magazine - Q4 2020 - 23
IEEE Circuits and Systems Magazine - Q4 2020 - 24
IEEE Circuits and Systems Magazine - Q4 2020 - 25
IEEE Circuits and Systems Magazine - Q4 2020 - 26
IEEE Circuits and Systems Magazine - Q4 2020 - 27
IEEE Circuits and Systems Magazine - Q4 2020 - 28
IEEE Circuits and Systems Magazine - Q4 2020 - 29
IEEE Circuits and Systems Magazine - Q4 2020 - 30
IEEE Circuits and Systems Magazine - Q4 2020 - 31
IEEE Circuits and Systems Magazine - Q4 2020 - 32
IEEE Circuits and Systems Magazine - Q4 2020 - 33
IEEE Circuits and Systems Magazine - Q4 2020 - 34
IEEE Circuits and Systems Magazine - Q4 2020 - 35
IEEE Circuits and Systems Magazine - Q4 2020 - 36
IEEE Circuits and Systems Magazine - Q4 2020 - 37
IEEE Circuits and Systems Magazine - Q4 2020 - 38
IEEE Circuits and Systems Magazine - Q4 2020 - 39
IEEE Circuits and Systems Magazine - Q4 2020 - 40
IEEE Circuits and Systems Magazine - Q4 2020 - 41
IEEE Circuits and Systems Magazine - Q4 2020 - 42
IEEE Circuits and Systems Magazine - Q4 2020 - 43
IEEE Circuits and Systems Magazine - Q4 2020 - 44
IEEE Circuits and Systems Magazine - Q4 2020 - 45
IEEE Circuits and Systems Magazine - Q4 2020 - 46
IEEE Circuits and Systems Magazine - Q4 2020 - 47
IEEE Circuits and Systems Magazine - Q4 2020 - 48
IEEE Circuits and Systems Magazine - Q4 2020 - 49
IEEE Circuits and Systems Magazine - Q4 2020 - 50
IEEE Circuits and Systems Magazine - Q4 2020 - 51
IEEE Circuits and Systems Magazine - Q4 2020 - 52
IEEE Circuits and Systems Magazine - Q4 2020 - 53
IEEE Circuits and Systems Magazine - Q4 2020 - 54
IEEE Circuits and Systems Magazine - Q4 2020 - 55
IEEE Circuits and Systems Magazine - Q4 2020 - 56
IEEE Circuits and Systems Magazine - Q4 2020 - 57
IEEE Circuits and Systems Magazine - Q4 2020 - 58
IEEE Circuits and Systems Magazine - Q4 2020 - 59
IEEE Circuits and Systems Magazine - Q4 2020 - 60
IEEE Circuits and Systems Magazine - Q4 2020 - 61
IEEE Circuits and Systems Magazine - Q4 2020 - 62
IEEE Circuits and Systems Magazine - Q4 2020 - 63
IEEE Circuits and Systems Magazine - Q4 2020 - 64
IEEE Circuits and Systems Magazine - Q4 2020 - 65
IEEE Circuits and Systems Magazine - Q4 2020 - 66
IEEE Circuits and Systems Magazine - Q4 2020 - 67
IEEE Circuits and Systems Magazine - Q4 2020 - 68
IEEE Circuits and Systems Magazine - Q4 2020 - 69
IEEE Circuits and Systems Magazine - Q4 2020 - 70
IEEE Circuits and Systems Magazine - Q4 2020 - 71
IEEE Circuits and Systems Magazine - Q4 2020 - 72
IEEE Circuits and Systems Magazine - Q4 2020 - 73
IEEE Circuits and Systems Magazine - Q4 2020 - 74
IEEE Circuits and Systems Magazine - Q4 2020 - 75
IEEE Circuits and Systems Magazine - Q4 2020 - 76
IEEE Circuits and Systems Magazine - Q4 2020 - 77
IEEE Circuits and Systems Magazine - Q4 2020 - 78
IEEE Circuits and Systems Magazine - Q4 2020 - 79
IEEE Circuits and Systems Magazine - Q4 2020 - 80
IEEE Circuits and Systems Magazine - Q4 2020 - 81
IEEE Circuits and Systems Magazine - Q4 2020 - 82
IEEE Circuits and Systems Magazine - Q4 2020 - 83
IEEE Circuits and Systems Magazine - Q4 2020 - 84
IEEE Circuits and Systems Magazine - Q4 2020 - 85
IEEE Circuits and Systems Magazine - Q4 2020 - 86
IEEE Circuits and Systems Magazine - Q4 2020 - 87
IEEE Circuits and Systems Magazine - Q4 2020 - 88
IEEE Circuits and Systems Magazine - Q4 2020 - Cover3
IEEE Circuits and Systems Magazine - Q4 2020 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q1
https://www.nxtbookmedia.com