IEEE Circuits and Systems Magazine - Q4 2020 - 27

[75] Y. H. Kao and I. J. Wu, " A balanced Colpitts saw oscillator with
cross-coupled pair enhancement, " in Proc. Asia-Pacific Microw. Conf.,
Dec. 2011, pp. 995-998.
[76] Y. Baeyens et al., " Compact INP-based HBT VCOs with a wide tuning range at w- and d-band, " IEEE Trans. Microw. Theory Techn., vol. 48,
no. 12, pp. 2403-2408, Dec. 2000. doi: 10.1109/22.898990.
[77] Y. Baeyens et al., " Compact INP-based HBT VCOs with a wide tuning range at w- and d-band, " IEEE Trans. Microw. Theory Techn., vol. 48,
no. 12, pp. 2403-2408, Dec. 2000.
[78] L. Hesen and E. Stikvoort, " An enhanced Colpitts uhf oscillator
for tv tuners, " in Proc. 24th Eur. Solid-State Circuits Conf., Sept. 1998,
pp. 396-399.
[79] Y. H. Kao and I. J. Wu, " A balanced Colpitts saw oscillator with
cross-coupled pair enhancement, " in Proc. Asia-Pacific Microw. Conf.,
Dec. 2011, pp. 995-998.
[80] J. P. Hong and S. G. Lee, " Low phase noise gm-boosted differential gate-to-source feedback Colpitts CMOS VCO, " IEEE J. Solid-State
Circuits, vol. 44, no. 11, pp. 3079-3091, Nov. 2009. doi: 10.1109/JSSC.2009.
2031519.
[81] M. Azadmehr, I. Paprotny, and Y. Berg, " A differential complementary Colpitts oscillator based on common drain topology, " in Proc. WCECS
Int. Conf. Circuits Syst. (ICCS2018), Oct. 2008.
[82] K. W. Ha, H. Ryu, J. H. Lee, J. G. Kim, and D. Baek, " gm -boosted complementary current-reuse Colpitts VCO with low power and low phase
noise, " IEEE Microw. Wireless Compon. Lett., vol. 24, no. 6, pp. 418-420,
June 2014. doi: 10.1109/LMWC.2014.2313582.
[83] S.-J. Yun, S.-B. Shin, H.-C. Choi, and S.-G. Lee, " A 1mw current-reuse
cmos differential LC-VCO with low phase noise, " in Proc. ISSCC. IEEE
Int. Dig. Tech. Papers. Solid- State Circuits Conf., Feb. 2005, vol. 1,
pp. 540-616.
[84] H. Ikeda, " An MOS transistor rf oscillator suitable for MOS-IC, "
Proc. IEEE, vol. 56, no. 9, pp. 1638-1639, Sept. 1968. doi: 10.1109/PROC.
1968.6694.
[85] A. S. Elwakil, " On the two-port network classification of Colpitts
oscillators, " IET Circuits, Devices Syst., vol. 3, no. 5, pp. 223-232, Oct.
2009. doi: 10.1049/iet-cds.2009.0062.
[86] M. K. Kazimierczuk and D. Murthy-Bellur, " Loop gain of the common-gate Colpitts oscillator, " IET Circuits, Devices Syst., vol. 5, no. 4,
pp. 275-284, July 2011. doi: 10.1049/iet-cds.2010.0163.
[87] M. Soyuer et al., " A 2.4-GHz silicon bipolar oscillator with integrated resonator, " IEEE J. Solid-State Circuits, vol. 31, no. 2, pp. 268-270, Feb.
1996. doi: 10.1109/4.488006.
[88] P. Andreani, X. Wang, L. Vandi, and A. Fard, " A study of phase noise
in Colpitts and LC-tank CMOS oscillators, " IEEE J. Solid-State Circuits,
vol. 40, no. 5, pp. 1107-1118, May 2005. doi: 10.1109/JSSC.2005.845991.
[89] I. Chlis, D. Pepe, and D. Zito, " A novel differential Colpitts CMOS
oscillator circuit topology, " in Proc. 27th Irish Signals Syst. Conf. (ISSC),
June 2016, pp. 1-3. doi: 10.1109/ISSC.2016.7528477.
[90] M.-D. Tsai, Y.-H. Cho, and H. Wang, " A 5-GHz low phase noise differential Colpitts CMOS VCO, " IEEE Microw. Wireless Compon. Lett., vol.
15, no. 5, pp. 327-329, May 2005.
[91] A. Mazzanti and P. Andreani, " A 1.4mW 4.90-to-5.65 GHz class-C
CMOS VCO with an average FoM of 194.5dBc/Hz, " in Proc. IEEE Int. SolidState Circuits Conf.- Dig. Tech. Papers, Feb. 2008, pp. 474-629.
[92] X. F. Xiao, W. L. Goh, M. Je, and J. H. Chang, " Gm-enhanced differential Colpitts VCO, " in Proc. Int. Symp. Integrated Circuits, Dec. 2011,
pp. 242-245.
[93] A. Koukab and O. T. Amiri, " On Gm-boosting and cyclostationary
noise mechanisms in low-voltage CMOS differential Colpitts VCOS, " in
Proc. IEEE 12th Topical Meeting Silicon Monolithic Integr. Circuits RF Syst.,
Jan. 2012, pp. 65-68.
[94] P. Jin, S. A Dong, H. Jin, and M. Wu, " Processing chip for thin film
bulk acoustic resonator mass sensor, " J. Control Sci. Eng., 2012. doi:
10.1155/2012/923617.
[95] Y. P. Su, W. Y. Hu, J. W. Lin, Y. C. Chen, S. Sezer, and S. J. Chen,
" Low power Gm-boosted differential Colpitts VCO, " in Proc. IEEE Int.
SOC Conf., Sept. 2011, pp. 247-250.
[96] M. D. Wei, S. F. Chang, and S. W. Huang, " An amplitude-balanced
current-reused CMOS VCO using spontaneous transconductance
match technique, " IEEE Microw. Wireless Compon. Lett., vol. 19, no. 6,
pp. 395-397, June 2009.
[97] C. Huang, M. Marshall, and B. H. White, " Field effect transistor applications, " Trans. Amer. Inst. Elect. Eng. I, Commun. Electron., vol. 75,
no. 3, pp. 323-329, July 1956. doi: 10.1109/TCE.1956.6372534.
FOURTH QUARTER 2020 		

[98] C.-Y. Cha and S.-G. Lee, " A complementary Colpitts oscillator based
on 0.35 um CMOS technology, " in Proc. ESSCIRC 29th Eur. Solid-State
Circuits Conf. (IEEE Cat. No.03EX705), Sept. 2003, pp. 691-694.
[99] S. S. Eaton, " Micropower crystal-controlled oscillator design using RCA COS/MOS inverters, " RCA Solid state division, application note
ICAN-6539, 1971.
[100] E. A. Vittoz, M. G. R. Degrauwe, and S. Bitz, " High-performance
crystal oscillator circuits: theory and application, " IEEE J. Solid-State
Circuits, vol. 23, no. 3, pp. 774-783, June 1988. doi: 10.1109/4.318.
[101] C. Chang, K. Saeki, and Y. Sekine, " A Colpitts-type crystal oscillator with a common-base circuit for gigahertz frequency band, " in Proc.
IEE Japan, AVLSIWS, France, June 2005.
[102] N. Nomura, Y. Aoyagi, C. Chang, K. Asano, and Y. Sekine, " A Colpitts-type crystal oscillator for gigahertz frequency, " in Proc. IEEE Int.
Frequency Control Symp. Expo., June 2006, pp. 233-236. doi: 10.1109/
FREQ.2006.275386.
[103] A. Ebrahimi and P. Yaghmaee, " A new enhanced differential
CMOS Colpitts oscillator, " J. Circuits, Syst. Comput., vol. 23, no. 1, p.
1,450,003, 2014. [Online]. Available: https://www.worldscientific.com/
doi/abs/10.1142/S0218126614500030. doi: 10.1142/S0218126614500030.
[104] C. Y. Cha, " A source coupled differential CMOS complementary
Colpitts oscillator with on-chip transformer tank, " IEEE Trans. Microw.
Theory Techn., vol. 56, no. 5, pp. 1076-1082, May 2008.
[105] S.-L. Jang, C.-Y. Chiu, and C.-F. Lee, " A complementary Colpitts
VCO implemented with ring inductor, " in Proc. IEEE Int. Symp. VLSI Design, Autom. Test (VLSI-DAT), Apr. 2008, pp. 125-127.
[106] P. J. Baxandall, " Transistor crystal oscillators and the design
of a 1-mc/s oscillator circuit capable of good frequency stability, " Radio Electronic Eng., vol. 29, no. 4, pp. 229-246, Apr. 1965. doi: 10.1049/
ree.1965.0049.
[107] R. G. Meyer and D. C. F. Soo, " Mos crystal oscillator design, " IEEE
J. Solid-State Circuits, vol. 15, no. 2, pp. 222-228, Apr. 1980. doi: 10.1109/
JSSC.1980.1051366.
[108] A. Nelson, J. Hu, J. Kaitila, R. Ruby, and B. Otis, " A 22 uw, 2.0GHz
fbar oscillator, " in Proc. IEEE Radio Frequency Integr. Circuits Symp., June
2011, pp. 1-4.
[109] S. Iguchi, T. Sakurai, and M. Takamiya, " A 39.25MHz 278dB-FOM
19µW LDO-free stacked-amplifier crystal oscillator (SAXO) operating
at I/O voltage, " in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), Jan.
2016, pp. 100-101.
[110] S. Iguchi, T. Sakurai, and M. Takamiya, " A low-power CMOS crystal
oscillator using a stacked-amplifier architecture, " IEEE J. Solid-State Circuits, vol. 52, no. 11, pp. 3006-3017, 2017. doi: 10.1109/JSSC.2017.2743174.
[111] M. Voicu, D. Pepe, and D. Zito, " Phase noise analysis of Colpitts
and Hartley CMOS oscillators, " in Proc. 24th IET Irish Signals Syst. Conf.
(ISSC 2013), 2013, pp. 1-5. doi: 10.1049/ic.2013.0030.
[112] T. Ussmueller, K. Seemann, and R. Weigel, " Comparison of gmboosted oscillators in silicon field effect transistor and silicon-germanium hetero-junction bipolar transistor technology, " in Proc. Eur. Microwave Integr. Circuits Conf. (EuMIC), 2009, pp. 539-542.
[113] K. Sankaragomathi, L. Callaghan, R. Ruby, and B. Otis, " A 220dB
FOM, 1.9GHz oscillator using a phase noise reduction technique for
high-Q oscillators, " in Proc. IEEE Radio Frequency Integr. Circuits Symp.
(RFIC), 2013, pp. 31-34. doi: 10.1109/RFIC.2013.6569514.
[114] M. Hajizadehmotlagh, A. Singhal, and I. Paprotny, " Enhanced capture of aerosol particles on resonator-based pm mass sensors using
staggered arrays of micro-pillars, " J. Microelectromech. Syst., pp. 1-5,
2020.
[115] M. Azadmehr, I. Paprotny, and Y. Berg, " Q-loading of Colpittsbased mass-sensing oscillators in resonator-based mems airborne particulate matter (pm) sensors, " in Proc. IEEE Int. Conf. Consumer Electronics (ICCE), 2019, pp. 1-4. doi: 10.1109/ICCE.2019.8662115.
[116] B. Razavi, RF Microelectronics. Englewood Cliffs, NJ: Prentice Hall,
2011, pp. 570-571.
[117] P. Kinget, Integrated GHz Voltage Controlled Oscillators. Boston:
Kluwer, 1997, pp. 353-381.
[118] H. Hsieh and L. Lu, " A high-performance CMOS voltage-controlled
oscillator for ultra-low-voltage operations, " IEEE Trans. Microw. Theory
Techn., vol. 55, no. 3, pp. 467-473, 2007. doi: 10.1109/TMTT.2006.891471.
[119] J. Kim, S. J. Kim, S. Han, and S. Lee, " A 0.5V 2.41GHz, 196.3dBc/Hz
FOM differential Colpitts VCO with an output voltage swing exceeding
supply and ground potential requiring no additional inductor, " in Proc.
IEEE Radio Frequency Integr. Circuits Symp. (RFIC), 2013, pp. 39-42. doi:
10.1109/RFIC.2013.6569516.
IEEE CIRCUITS AND SYSTEMS MAGAZINE	

27


https://www.worldscientific.com/doi/abs10.1142/so218126614500030 https://www.worldscientific.com/doi/abs10.1142/so218126614500030

IEEE Circuits and Systems Magazine - Q4 2020

Table of Contents for the Digital Edition of IEEE Circuits and Systems Magazine - Q4 2020

Contents
IEEE Circuits and Systems Magazine - Q4 2020 - Cover1
IEEE Circuits and Systems Magazine - Q4 2020 - Cover2
IEEE Circuits and Systems Magazine - Q4 2020 - Contents
IEEE Circuits and Systems Magazine - Q4 2020 - 2
IEEE Circuits and Systems Magazine - Q4 2020 - 3
IEEE Circuits and Systems Magazine - Q4 2020 - 4
IEEE Circuits and Systems Magazine - Q4 2020 - 5
IEEE Circuits and Systems Magazine - Q4 2020 - 6
IEEE Circuits and Systems Magazine - Q4 2020 - 7
IEEE Circuits and Systems Magazine - Q4 2020 - 8
IEEE Circuits and Systems Magazine - Q4 2020 - 9
IEEE Circuits and Systems Magazine - Q4 2020 - 10
IEEE Circuits and Systems Magazine - Q4 2020 - 11
IEEE Circuits and Systems Magazine - Q4 2020 - 12
IEEE Circuits and Systems Magazine - Q4 2020 - 13
IEEE Circuits and Systems Magazine - Q4 2020 - 14
IEEE Circuits and Systems Magazine - Q4 2020 - 15
IEEE Circuits and Systems Magazine - Q4 2020 - 16
IEEE Circuits and Systems Magazine - Q4 2020 - 17
IEEE Circuits and Systems Magazine - Q4 2020 - 18
IEEE Circuits and Systems Magazine - Q4 2020 - 19
IEEE Circuits and Systems Magazine - Q4 2020 - 20
IEEE Circuits and Systems Magazine - Q4 2020 - 21
IEEE Circuits and Systems Magazine - Q4 2020 - 22
IEEE Circuits and Systems Magazine - Q4 2020 - 23
IEEE Circuits and Systems Magazine - Q4 2020 - 24
IEEE Circuits and Systems Magazine - Q4 2020 - 25
IEEE Circuits and Systems Magazine - Q4 2020 - 26
IEEE Circuits and Systems Magazine - Q4 2020 - 27
IEEE Circuits and Systems Magazine - Q4 2020 - 28
IEEE Circuits and Systems Magazine - Q4 2020 - 29
IEEE Circuits and Systems Magazine - Q4 2020 - 30
IEEE Circuits and Systems Magazine - Q4 2020 - 31
IEEE Circuits and Systems Magazine - Q4 2020 - 32
IEEE Circuits and Systems Magazine - Q4 2020 - 33
IEEE Circuits and Systems Magazine - Q4 2020 - 34
IEEE Circuits and Systems Magazine - Q4 2020 - 35
IEEE Circuits and Systems Magazine - Q4 2020 - 36
IEEE Circuits and Systems Magazine - Q4 2020 - 37
IEEE Circuits and Systems Magazine - Q4 2020 - 38
IEEE Circuits and Systems Magazine - Q4 2020 - 39
IEEE Circuits and Systems Magazine - Q4 2020 - 40
IEEE Circuits and Systems Magazine - Q4 2020 - 41
IEEE Circuits and Systems Magazine - Q4 2020 - 42
IEEE Circuits and Systems Magazine - Q4 2020 - 43
IEEE Circuits and Systems Magazine - Q4 2020 - 44
IEEE Circuits and Systems Magazine - Q4 2020 - 45
IEEE Circuits and Systems Magazine - Q4 2020 - 46
IEEE Circuits and Systems Magazine - Q4 2020 - 47
IEEE Circuits and Systems Magazine - Q4 2020 - 48
IEEE Circuits and Systems Magazine - Q4 2020 - 49
IEEE Circuits and Systems Magazine - Q4 2020 - 50
IEEE Circuits and Systems Magazine - Q4 2020 - 51
IEEE Circuits and Systems Magazine - Q4 2020 - 52
IEEE Circuits and Systems Magazine - Q4 2020 - 53
IEEE Circuits and Systems Magazine - Q4 2020 - 54
IEEE Circuits and Systems Magazine - Q4 2020 - 55
IEEE Circuits and Systems Magazine - Q4 2020 - 56
IEEE Circuits and Systems Magazine - Q4 2020 - 57
IEEE Circuits and Systems Magazine - Q4 2020 - 58
IEEE Circuits and Systems Magazine - Q4 2020 - 59
IEEE Circuits and Systems Magazine - Q4 2020 - 60
IEEE Circuits and Systems Magazine - Q4 2020 - 61
IEEE Circuits and Systems Magazine - Q4 2020 - 62
IEEE Circuits and Systems Magazine - Q4 2020 - 63
IEEE Circuits and Systems Magazine - Q4 2020 - 64
IEEE Circuits and Systems Magazine - Q4 2020 - 65
IEEE Circuits and Systems Magazine - Q4 2020 - 66
IEEE Circuits and Systems Magazine - Q4 2020 - 67
IEEE Circuits and Systems Magazine - Q4 2020 - 68
IEEE Circuits and Systems Magazine - Q4 2020 - 69
IEEE Circuits and Systems Magazine - Q4 2020 - 70
IEEE Circuits and Systems Magazine - Q4 2020 - 71
IEEE Circuits and Systems Magazine - Q4 2020 - 72
IEEE Circuits and Systems Magazine - Q4 2020 - 73
IEEE Circuits and Systems Magazine - Q4 2020 - 74
IEEE Circuits and Systems Magazine - Q4 2020 - 75
IEEE Circuits and Systems Magazine - Q4 2020 - 76
IEEE Circuits and Systems Magazine - Q4 2020 - 77
IEEE Circuits and Systems Magazine - Q4 2020 - 78
IEEE Circuits and Systems Magazine - Q4 2020 - 79
IEEE Circuits and Systems Magazine - Q4 2020 - 80
IEEE Circuits and Systems Magazine - Q4 2020 - 81
IEEE Circuits and Systems Magazine - Q4 2020 - 82
IEEE Circuits and Systems Magazine - Q4 2020 - 83
IEEE Circuits and Systems Magazine - Q4 2020 - 84
IEEE Circuits and Systems Magazine - Q4 2020 - 85
IEEE Circuits and Systems Magazine - Q4 2020 - 86
IEEE Circuits and Systems Magazine - Q4 2020 - 87
IEEE Circuits and Systems Magazine - Q4 2020 - 88
IEEE Circuits and Systems Magazine - Q4 2020 - Cover3
IEEE Circuits and Systems Magazine - Q4 2020 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q1
https://www.nxtbookmedia.com