IEEE Circuits and Systems Magazine - Q4 2020 - 46

[14] E. Nicholson et al., " Analogue closed-loop optogenetic modulation
of hippocampal pyramidal cells dissociates gamma frequency and amplitude, " eLife, 2018. doi: 10.7554/eLife.38346.
[15] G. Gagnon-Turcotte et al., " A wireless electro-optic headstage with
a 0.13-µm CMOS custom integrated DWT neural signal decoder for
closed-loop optogenetics, " IEEE Trans. Biomed. Circuits Syst., vol. 13, no.
5, pp. 1036-1051, 2019. doi: 10.1109/TBCAS.2019.2930498.
[16] L. Liu, L. Yao, X. Zou, W. L. Goh, and M. Je, " Neural recording frontend IC using action potential detection and analog buffer with digital
delay for data compression, " in Proc. IEEE EMBC, 2013, pp. 747-750. doi:
10.1109/EMBC.2013.6609608.
[17] G. Gagnon-Turcotte et al., " A 0.13-µm CMOS SoC for simultaneous
multichannel optogenetics and neural recording, " IEEE J. Solid-State
Circuits, vol. 53, no. 11, pp. 3087-3100, 2018. doi: 10.1109/JSSC.2018.
2865474.
[18] C.-H. Chen et al., " An integrated circuit for simultaneous extracellular electrophysiology recording and optogenetic neural manipulation, " IEEE Trans. Biomed. Eng., vol. 64, no. 3, pp. 557-568, Mar. 2017.
doi: 10.1109/TBME.2016.2609412.
[19] G. Gagnon-Turcotte et al., " A wireless optogenetic headstage with
multichannel electrophysiological recording capability, " Sensors, vol.
15, no. 9, pp. 22,776-22,797, 2015. doi: 10.3390/s150922776.
[20] G. Gagnon-Turcotte et al., " A wireless headstage for combined
optogenetics and multichannel electrophysiological recording, " IEEE
Trans. Biomed. Circuits Syst., vol. 11, no. 1, pp. 1-14, 2017. doi: 10.1109/
TBCAS.2016.2547864.
[21] Y. Perelman and R. Ginosar, " An integrated system for multichannel
neuronal recording with spike/LFP separation, integrated A/D conversion and threshold detection, " IEEE Trans. Biomed. Eng., vol. 54, no. 1,
pp. 130-137, 2007. doi: 10.1109/TBME.2006.883732.
[22] G. Buzsáki et al., " Tools for probing local circuits: high-density
silicon probes combined with optogenetics, " Neuron, vol. 86, no. 1, pp.
92-105, 2015. doi: 10.1016/j.neuron.2015.01.028.
[23] A. M. Herman et al., " Cell type-specific and time-dependent light
exposure contribute to silencing in neurons expressing Channelrhodopsin-2, " eLife, vol. 3, 2014. doi: 10.7554/eLife.01481.
[24] M. Capogrosso et al., " Configuration of electrical spinal cord stimulation through real-time processing of gait kinematics, " Nat. Protoc., vol.
13, no. 9, pp. 2031-2061, 2018. doi: 10.1038/s41596-018-0030-9.
[25] C. Ehtier and L. E. Miller, " Brain-controlled muscle stimulation for
the restoration of motor function, " Neurobiol. Dis., vol. 83, pp. 180-190,
2015. doi: 10.1016/j.nbd.2014.10.014.
[26] C. Gold, D. A. Henze, K. Christof, and G. Buzáki, " On the origin of
the extracellular action potential waveform: A modeling study, " J. Neurophysiol., vol. 95, no. 5, pp. 3113-3128, 2006. doi: 10.1152/jn.00979.2005.
[27] E. N. Brown, R. E. Kass, and P. P. Mitra, " Multiple neural spike train
data analysis: state-of-the-art and future challenges, " Nat. Neurosci.,
vol. 7, no. 5, pp. 456-461, 2004. doi: 10.1038/nn1228.
[28] J. O. Kenneth, " Neural coding, " Neuron, vol. 26, no. 3, pp. 563-566,
2000. doi: 10.1016/S0896-6273(00)81193-9.
[29] A. Meysam et al., " A battery-powered activity-dependent intracortical microstimulation IC for brain-machine-brain interface, " IEEE
J. Solid-State Circuits, vol. 46, no. 4, pp. 731-745, 2011. doi: 10.1109/
JSSC.2011.2108770.
[30] X. Liu et al., " A compact closed-loop optogenetics system based on
artifact-free transparent graphene electrodes, " Front. Neurosci., vol. 12,
2018. doi: 10.3389/fnins.2018.00132.
[31] A. E. Mendrela et al., " A high-resolution opto-electrophysiology
system with a miniature integrated headstage, " IEEE Trans. Biomed. Circuits Syst., vol. 12, no. 5, pp. 1065-1075, 2018. doi: 10.1109/TBCAS.2018.
2852267.
[32] L. Xilin et al., " Design of a closed-loop, bidirectional brain machine
interface system with energy efficient neural feature extraction and PID
control, " IEEE Trans. Biomed. Circuits Syst, vol. 11, no. 4, pp. 729-742,
2017. doi: 10.1109/TBCAS.2016.2622738.
[33] H.-G. Rhew et al., " A fully self-contained logarithmic closed-loop
deep brain stimulation SOC with wireless telemetry and wireless power
management, " IEEE J. Solid-State Circuits, vol. 49, no. 10, pp. 2213-2227,
2014. doi: 10.1109/JSSC.2014.2346779.
[34] H. Kassiri et al., " Rail-to-rail-input dual-radio 64-channel closedloop neurostimulator, " IEEE J. Solid-State Circuits, vol. 52, no. 11, pp.
2793-2810, 2017. doi: 10.1109/JSSC.2017.2749426.

46 	

[35] S. Park et al., " One-step optogenetics with multifunctional flexible polymer fibers, " Nat. Neurosci., vol. 20, no. 4, pp. 612-619, 2017. doi:
10.1038/nn.4510.
[36] S. Chen et al., " A fiber-based implantable multi-optrode array with
contiguous optical and electrical sites, " J. Neural Eng., vol. 10, no. 4,
2013. doi: 10.1088/1741-2560/10/4/046020.
[37] J. Lee et al., " Transparent intracortical microprobe array for simultaneous spatiotemporal optical stimulation and multichannel electrical recording, " Nat. Methods, vol. 12, no. 12, pp. 1157-1162, 2015. doi:
10.1038/nmeth.3620.
[38] K. L. Montgomery et al., " Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice, " Nat. Methods,
vol. 12, no. 10, pp. 969-974, 2015. doi: 10.1038/nmeth.3536.
[39] B. McGovern et al., " A new individually addressable micro-LED
array for photogenetic neural stimulations, " IEEE Trans. Biomed. Circuits Syst., vol. 4, no. 6, pp. 469-476, 2010. doi: 10.1109/TBCAS.2010.
2081988.
[40] R. R. Harrison and C. Charles, " A low-power low-noise CMOS amplifier for neural recording applications, " IEEE J. Solid-State Circuits, vol.
38, no. 6, pp. 958-965, 2003. doi: 10.1109/JSSC.2003.811979.
[41] W. Wattanapanitch et al., " An energy-efficient micropower neural
recording amplifier, " IEEE Trans. Biomed. Circuits Syst., vol. 1, no. 2, pp.
136-147, 2007. doi: 10.1109/TBCAS.2007.907868.
[42] F. Zhang et al., " Design of ultra-low power biopotential amplifiers
for biosignal acquisition applications, " IEEE Trans. Biomed. Circuits
Syst., vol. 6, no. 4, pp. 344-355, 2012.
[43] R. R. Harrison et al., " A low-power integrated circuit for a wireless
100-electrode neural recording system, " IEEE J. Solid-State Circuits, vol.
42, no. 1, pp. 123-133, 2007. doi: 10.1109/JSSC.2006.886567.
[44] H. Zhao et al., " A CMOS-based neural implantable optrode for optogenetic stimulation and electrical recording, " in Proc. IEEE Biomed.
Circuits Syst. Conf. (BioCAS'15), 2015, pp. 1-4. doi: 10.1109/BioCAS.2015.
7348357.
[45] V. S. Polikov et al., " Response of brain tissue to chronically implanted neural electrodes, " J. Neurosci. Methods, vol. 148, no. 1, pp. 1-18,
2005. doi: 10.1016/j.jneumeth.2005.08.015.
[46] L. Wang et al., " An 18µW 79dB-DR 20KHz-BW MASH DR Modulator
Utilizing Self-Biased Amplifiers for Biomedical Applications, " in Proc.
IEEE Custom Integr. Circuits Conf. (CICC'11), 2011, pp. 1-4. doi: 10.1109/
CICC.2011.6055286.
[47] K. Paralikar et al., " An implantable 5mW/channel dual-wavelength
optogenetic stimulator for therapeutic neuromodulation research, " in
Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC'10), 2010, pp. 238-240.
doi: 10.1109/ISSCC.2010.5433938.
[48] H.-M. Lee et al., " A wireless implantable switched-capacitor based
optogenetic stimulating system, " in Proc. IEEE Eng. Med. Biol. Soc.
(EMBC'14), 2014, pp. 878-881.
[49] H. Zhao et al., " An implantable optrode with self-diagnostic function in 0.35µm CMOS for optical neural stimulation, " in Proc. IEEE
Biomed. Circuits Syst. Conf. (BioCAS'14), 2014, pp. 244-247. doi: 10.1109/
BioCAS.2014.6981708.
[50] I. Obeid and P. D. Wolf, " Evaluation of spike-detection algorithms
for a brain-machine interface application, " IEEE Trans. Biomed.
En g., vol. 51, no. 6, pp. 9 05 - 911, 20 0 4. doi: 10.110 9/ T BM E . 20 0 4.
826683.
[51] G. Gagnon-Turcotte et al., " Comparison of low-power biopotential processors for on-the-fly spike detection, " in Proc. IEEE Int.
Symp. Circuits Syst. (ISCAS), 2015, pp. 802-805. doi: 10.1109/ISCAS.2015.
7168755.
[52] R. R. Harrison, " A low-power integrated circuit for adaptive detection of action potentials in noisy signals, " in Proc. IEEE Eng. Med.
Biol. Soc. (EMBC), vol. 4, 2003, pp. 3325-3328. doi: 10.1109/IEMBS.2003.
1280856.
[53] Wave Clus. [Online]. Available: http://www2.le.ac.uk/departments/
engineering/research/bioengineering/neuroengineering-lab/spike
-sorting
[54] C. Armstrong et al., " Closed-loop optogenetic intervention in
mice, " Nat. Protoc., vol. 8, no. 8, pp. 1475-1495, 2013. doi: 10.1038/nprot.
2013.080.
[55] E. M. Izhikevich et al., " Bursts as a unit of neural information: Selective communication via resonance, " Trends Neurosci., vol. 26, no. 3, pp.
161-167, 2003. doi: 10.1016/S0166-2236(03)00034-1.

IEEE CIRCUITS AND SYSTEMS MAGAZINE 		

FOURTH QUARTER 2020


http://www2.le.ac.uk/departments/engineering/research/bioengineering/neuroengineering-lab/spike-sorting http://www2.le.ac.uk/departments/engineering/research/bioengineering/neuroengineering-lab/spike-sorting http://www2.le.ac.uk/departments/engineering/research/bioengineering/neuroengineering-lab/spike-sorting

IEEE Circuits and Systems Magazine - Q4 2020

Table of Contents for the Digital Edition of IEEE Circuits and Systems Magazine - Q4 2020

Contents
IEEE Circuits and Systems Magazine - Q4 2020 - Cover1
IEEE Circuits and Systems Magazine - Q4 2020 - Cover2
IEEE Circuits and Systems Magazine - Q4 2020 - Contents
IEEE Circuits and Systems Magazine - Q4 2020 - 2
IEEE Circuits and Systems Magazine - Q4 2020 - 3
IEEE Circuits and Systems Magazine - Q4 2020 - 4
IEEE Circuits and Systems Magazine - Q4 2020 - 5
IEEE Circuits and Systems Magazine - Q4 2020 - 6
IEEE Circuits and Systems Magazine - Q4 2020 - 7
IEEE Circuits and Systems Magazine - Q4 2020 - 8
IEEE Circuits and Systems Magazine - Q4 2020 - 9
IEEE Circuits and Systems Magazine - Q4 2020 - 10
IEEE Circuits and Systems Magazine - Q4 2020 - 11
IEEE Circuits and Systems Magazine - Q4 2020 - 12
IEEE Circuits and Systems Magazine - Q4 2020 - 13
IEEE Circuits and Systems Magazine - Q4 2020 - 14
IEEE Circuits and Systems Magazine - Q4 2020 - 15
IEEE Circuits and Systems Magazine - Q4 2020 - 16
IEEE Circuits and Systems Magazine - Q4 2020 - 17
IEEE Circuits and Systems Magazine - Q4 2020 - 18
IEEE Circuits and Systems Magazine - Q4 2020 - 19
IEEE Circuits and Systems Magazine - Q4 2020 - 20
IEEE Circuits and Systems Magazine - Q4 2020 - 21
IEEE Circuits and Systems Magazine - Q4 2020 - 22
IEEE Circuits and Systems Magazine - Q4 2020 - 23
IEEE Circuits and Systems Magazine - Q4 2020 - 24
IEEE Circuits and Systems Magazine - Q4 2020 - 25
IEEE Circuits and Systems Magazine - Q4 2020 - 26
IEEE Circuits and Systems Magazine - Q4 2020 - 27
IEEE Circuits and Systems Magazine - Q4 2020 - 28
IEEE Circuits and Systems Magazine - Q4 2020 - 29
IEEE Circuits and Systems Magazine - Q4 2020 - 30
IEEE Circuits and Systems Magazine - Q4 2020 - 31
IEEE Circuits and Systems Magazine - Q4 2020 - 32
IEEE Circuits and Systems Magazine - Q4 2020 - 33
IEEE Circuits and Systems Magazine - Q4 2020 - 34
IEEE Circuits and Systems Magazine - Q4 2020 - 35
IEEE Circuits and Systems Magazine - Q4 2020 - 36
IEEE Circuits and Systems Magazine - Q4 2020 - 37
IEEE Circuits and Systems Magazine - Q4 2020 - 38
IEEE Circuits and Systems Magazine - Q4 2020 - 39
IEEE Circuits and Systems Magazine - Q4 2020 - 40
IEEE Circuits and Systems Magazine - Q4 2020 - 41
IEEE Circuits and Systems Magazine - Q4 2020 - 42
IEEE Circuits and Systems Magazine - Q4 2020 - 43
IEEE Circuits and Systems Magazine - Q4 2020 - 44
IEEE Circuits and Systems Magazine - Q4 2020 - 45
IEEE Circuits and Systems Magazine - Q4 2020 - 46
IEEE Circuits and Systems Magazine - Q4 2020 - 47
IEEE Circuits and Systems Magazine - Q4 2020 - 48
IEEE Circuits and Systems Magazine - Q4 2020 - 49
IEEE Circuits and Systems Magazine - Q4 2020 - 50
IEEE Circuits and Systems Magazine - Q4 2020 - 51
IEEE Circuits and Systems Magazine - Q4 2020 - 52
IEEE Circuits and Systems Magazine - Q4 2020 - 53
IEEE Circuits and Systems Magazine - Q4 2020 - 54
IEEE Circuits and Systems Magazine - Q4 2020 - 55
IEEE Circuits and Systems Magazine - Q4 2020 - 56
IEEE Circuits and Systems Magazine - Q4 2020 - 57
IEEE Circuits and Systems Magazine - Q4 2020 - 58
IEEE Circuits and Systems Magazine - Q4 2020 - 59
IEEE Circuits and Systems Magazine - Q4 2020 - 60
IEEE Circuits and Systems Magazine - Q4 2020 - 61
IEEE Circuits and Systems Magazine - Q4 2020 - 62
IEEE Circuits and Systems Magazine - Q4 2020 - 63
IEEE Circuits and Systems Magazine - Q4 2020 - 64
IEEE Circuits and Systems Magazine - Q4 2020 - 65
IEEE Circuits and Systems Magazine - Q4 2020 - 66
IEEE Circuits and Systems Magazine - Q4 2020 - 67
IEEE Circuits and Systems Magazine - Q4 2020 - 68
IEEE Circuits and Systems Magazine - Q4 2020 - 69
IEEE Circuits and Systems Magazine - Q4 2020 - 70
IEEE Circuits and Systems Magazine - Q4 2020 - 71
IEEE Circuits and Systems Magazine - Q4 2020 - 72
IEEE Circuits and Systems Magazine - Q4 2020 - 73
IEEE Circuits and Systems Magazine - Q4 2020 - 74
IEEE Circuits and Systems Magazine - Q4 2020 - 75
IEEE Circuits and Systems Magazine - Q4 2020 - 76
IEEE Circuits and Systems Magazine - Q4 2020 - 77
IEEE Circuits and Systems Magazine - Q4 2020 - 78
IEEE Circuits and Systems Magazine - Q4 2020 - 79
IEEE Circuits and Systems Magazine - Q4 2020 - 80
IEEE Circuits and Systems Magazine - Q4 2020 - 81
IEEE Circuits and Systems Magazine - Q4 2020 - 82
IEEE Circuits and Systems Magazine - Q4 2020 - 83
IEEE Circuits and Systems Magazine - Q4 2020 - 84
IEEE Circuits and Systems Magazine - Q4 2020 - 85
IEEE Circuits and Systems Magazine - Q4 2020 - 86
IEEE Circuits and Systems Magazine - Q4 2020 - 87
IEEE Circuits and Systems Magazine - Q4 2020 - 88
IEEE Circuits and Systems Magazine - Q4 2020 - Cover3
IEEE Circuits and Systems Magazine - Q4 2020 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q1
https://www.nxtbookmedia.com