IEEE Circuits and Systems Magazine - Q4 2020 - 64

[25] R. Darraji, D. Bhaskar, T. Sharma, M. Helaoui, P. Mousavi, and F.
M. Ghannouchi, " Generalized theory and design methodology of wideband Doherty amplifiers applied to the realization of an octave-bandwidth prototype, " IEEE Trans. Microw. Theory Techn., vol. 65, no. 8, pp.
3014-3023, Aug. 2017. doi: 10.1109/TMTT.2017.2671438.
[26] A. Grebennikov and J. Wong, " A dual-band parallel Doherty power
amplifier for wireless applications, " IEEE Trans. Microw. Theory Techn.,
vol. 60, no. 10, pp. 3214-3222, Oct. 2012. doi: 10.1109/TMTT.2012.2210906.
[27] D. Y.-T. Wu, J. Annes, M. Bokatius, P. Hart, E. Krvavac, and G. Tucker, " A 350 W, 790 to 960 MHz wideband LDMOS Doherty amplifier using
a modified combining scheme, " in Proc. IEEE MTT-S Int. Microw. Symp.
Dig., June 2014, pp. 1-4. doi: 10.1109/MWSYM.2014.6848577.
[28] J. H. Qureshi, W. Sneijers, R. Keenan, L. C. N. deVreede, and F. van
Rijs, " A 700-W peak ultra-wideband broadcast Doherty amplifier, " in Proc.
IEEE Int. Microw. Symp., 2014, pp. 1-4. doi: 10.1109/MWSYM.2014.6848495.
[29] M. Akbarpour, F. M. Ghannouchi, and M. Helaoui, " Current-biasing
of power-amplifier transistors and its application for ultra-wideband
high efficiency at power back-off, " IEEE Trans. Microw. Theory Techn.,
vol. 65, no. 4, pp. 1257-1271, Apr. 2017. doi: 10.1109/TMTT.2016.2645149.
[30] X. Chen, W. Chen, F. M. Ghannouchi, Z. Feng, and Y. Liu, " A broadband Doherty power amplifier based on continuous-mode technology, "
IEEE Trans. Microw. Theory Techn., vol. 64, no. 12, pp. 4505-4517, Dec.
2016. doi: 10.1109/TMTT.2016.2623705.
[31] H. Kang et al., " Octave bandwidth Doherty power amplifier using multiple resonance circuit for the peaking amplifier, " IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 66, no. 12, pp. 583-593, Feb. 2019. doi:
10.1109/TCSI.2018.2869905.
[32] X. Y. Zhou, S. Y. Zheng, W. S. Chan, S. Chen, and D. Ho, " Broadband efficiency-enhanced mutually coupled harmonic postmatching
Doherty power amplifier, " IEEE Trans. Circuits Syst. I, Reg. Papers, vol.
64, no. 7, pp. 1758-1771, July 2017. doi: 10.1109/TCSI.2017.2658689.
[33] W. S. Chan, X. Y. Zhou, S. Y. Zheng, S. Chen, and D. Ho, " Doherty
power amplifier, " U.S. Patent No. 10 033 335 B1, July 24, 2018.
[34] X. Y. Zhou, S. Y. Zheng, W. S. Chan, and D. Ho, " Efficiency enhanced
post-matching Doherty power amplifier based on modified phase compensation network, " in Proc. 2017 IEEE MTT-S International Microw.
Symp. (IMS), Hawaii, HI. doi: 10.1109/MWSYM.2017.8058695.
[35] X. Y. Zhou, W. S. Chan, D. Ho, and S. Y. Zheng, " Loading the third
harmonic: a linear and efficient post-matching Doherty PA, " IEEE Microw. Mag., vol. 19, no. 1, pp. 99-105, Jan.-Feb. 2018. doi: 10.1109/MMM.
2017.2759669.
[36] X. Y. Zhou, S. Y. Zheng, W. S. Chan, W. J. Feng, and D. Ho, " A mixedtopology for broadband high efficiency Doherty power amplifier, " IEEE
Trans. Microw. Theory Techn., vol. 67, no. 3, pp. 1050-1064, Mar. 2019.
doi: 10.1109/TMTT.2019.2893178.
[37] X. Y. Zhou, S. Y. Zheng, W. S. Chan, W. J. Feng, and D. Ho, " Broadband high efficiency post-matching Doherty power amplifier based
on mixed-topology, " in Proc. 2018 IEEE MTT-S Int. Microw. Symp. (IMS),
Philadelphia, PA. doi: 10.1109/MWSYM.2018.8439222.
[38] X. Y. Zhou, S. Y. Zheng, W. S. Chan, X. H. Fang, and D. Ho, " Postmatching Doherty power amplifier with extended back-off range based on
self-generated harmonic injection, " IEEE Trans. Microw. Theory Techn.,
vol. 66, no. 4, pp. 1951-1963, Apr. 2018. doi: 10.1109/TMTT.2017.2784811.
[39] S. Chen, G. Wang, Z. Cheng, and Q. Xue, " A bandwidth enhanced
Doherty power amplifier with a compact output combiner, " IEEE Microw. Wireless Compon. Lett., vol. 26, no. 6, pp. 434-436, June 2016. doi:
10.1109/LMWC.2016.2558108.
[40] S. Chen, P. Qiao, G. Wang, Z. Cheng, and Q. Xue, " A broadband
three-device Doherty power amplifier based on a modified load modulation network, " in Proc. 2016 IEEE MTT-S Int. Microw. Symp. (IMS), San
Francisco, CA. doi: 10.1109/MWSYM.2016.7540172.
[41] Z. Yang et al., " Bandwidth extension of Doherty power amplifier using complex combining load with noninfinity peaking impedance, " IEEE
Trans. Microw. Theory Techn., vol. 67, no. 2, pp. 765-777, Feb. 2019. doi:
10.1109/TMTT.2018.2884415.
[42] J. Xia, W. Chen, F. Meng, C. Yu, and X. Zhu, " Improved three-stage
Doherty amplifier design with impedance compensation in load combiner for broadband applications, " IEEE Trans. Microw. Theory Techn.,
vol. 67, no. 2, pp. 778-786, Feb. 2019. doi: 10.1109/TMTT.2018.2884404.
[43] X. Fang, A. Chung, and S. Boumaiza, " Linearity-enhanced Doherty
power amplifier using output combining network with predefined AM-
PM characteristics, " IEEE Trans. Microw. Theory Techn., vol. 67, no. 1, pp.
195-204, Jan. 2019. doi: 10.1109/TMTT.2018.2870830.

64 	

[44] X. Fang and K. M. Cheng, " Improving power utilization factor of
broadband Doherty amplifier by using bandpass auxiliary transformer, " IEEE Trans. Microw. Theory Techn., vol. 63, no. 9, pp. 2811-2820, Sept.
2015. doi: 10.1109/TMTT.2015.2447544.
[45] P. Saad, R. Hou, R. Hellberg, and B. Berglund, " A 1.8-3.8-GHz power amplifier with 40% efficiency at 8-dB power back-off, " IEEE Trans.
Microw. Theory Techn., vol. 66, no. 11, pp. 4870-4882, Nov. 2018. doi:
10.1109/TMTT.2018.2867426.
[46] W. Jia, H. Yu, F. Yang, and D. Zhang, " A broadband Doherty amplifier
with back-off efficiency enhancement, " IEEE Microw. Wireless Compon.
Lett., vol. 28, no. 8, pp. 723-725, Aug. 2018. doi: 10.1109/LMWC.2018.2842684.
[47] M. S. Khan et al., " A novel two-stage broadband Doherty power amplifier for wireless applications, " IEEE Microw. Wireless Compon. Lett.,
vol. 28, no. 1, pp. 40-42, Jan. 2018. doi: 10.1109/LMWC.2017.2775157.
[48] J. J. Moreno Rubio, V. Camarchia, M. Pirola, and R. Quaglia, " Design of
an 87% fractional bandwidth Doherty power amplifier supported by a simplified bandwidth estimation method, " IEEE Trans. Microw. Theory Techn.,
vol. 66, no. 3, pp. 1319-1327, Mar. 2018. doi: 10.1109/TMTT.2017.2767586.
[49] W. Shi et al., " The influence of the output Impedances of peaking
power amplifier on broadband Doherty amplifiers, " IEEE Trans. Microw.
Theory Techn., vol. 65, no. 8, pp. 3002-3013, Aug. 2017. doi: 10.1109/
TMTT.2017.2673822.
[50] W. Shi et al., " Broadband continuous-mode Doherty power amplifiers with noninfinity peaking impedance, " IEEE Trans. Microw.
Theory Techn., vol. 66, no. 2, pp. 1034-1046, Feb. 2018. doi: 10.1109/
TMTT.2017.2749224.
[51] H. Lee et al., " Highly efficient fully integrated GaN-HEMT Doherty
power amplifier based on compact load network, " IEEE Trans. Microw.
Theory Techn., vol. 65, no. 12, pp. 5203-5211, Dec. 2017. doi: 10.1109/
TMTT.2017.2765632.
[52] X. Fang, H. Liu, and K. M. Cheng, " Extended efficiency range, equalcell Doherty amplifier design using explicit circuit model, " IEEE Microw.
Wireless Compon. Lett., vol. 27, no. 5, pp. 497-499, May 2017. doi: 10.1109/
LMWC.2017.2690870.
[53] X. Y. Zhou, W. S. Chan, J. Pang, J. Xia, and W. Feng, " Broadband
Doherty-like power amplifier using paralleled right- and left-handed impedance transformers, " IEEE Trans. Microw. Theory Techn., early access.
[54] P. M. Asbeck, " Will Doherty continue to rule for 5G? " in Proc.
IEEE MTT-S Int. Microw. Symp. Dig., May 2016, pp. 1-4. doi: 10.1109/
MWSYM.2016.7540208.
[55] S. Chen, G. Wang, Z. Cheng, P. Qin, and Q. Xue, " Adaptively biased 60-GHz
Doherty power amplifier in 65-nm CMOS, " IEEE Microw. Wireless Compon.
Lett., vol. 27, no. 3, pp. 296-298, Mar. 2017. doi: 10.1109/LMWC.2017.2662011.
[56] E. Kaymaksut, D. Zhao and P. Reynaert, " Transformer-based
Doherty power amplifiers for mm-wave applications in 40-nm CMOS, "
IEEE Trans. Microw. Theory Techn., vol. 63, no. 4, pp. 1186-1192, Apr. 2015.
doi: 10.1109/TMTT.2015.2409255.
[57] A. Agah, H. Dabag, B. Hanafi, P. M. Asbeck, J. F. Buckwalter, and
L. E. Larson, " Active millimeter-wave phase-shift Doherty power amplifier in 45-nm SOI CMOS, " IEEE J. Solid-State Circuits, vol. 48, no. 10, pp.
2338-2350, Oct. 2013. doi: 10.1109/JSSC.2013.2269854.
[58] C. R. Chappidi, X. Wu, and K. Sengupta, " Simultaneously broadband and back-off efficient mm-wave PAs: A multi-port network synthesis approach, " IEEE J. Solid-State Circuits, vol. 53, no. 9, pp. 2543-2559,
Sept. 2018. doi: 10.1109/JSSC.2018.2841977.
[59] S. Hu, F. Wang, and H. Wang, " A 28-/37-/39-GHz linear Doherty power amplifier in silicon for 5G applications, " IEEE J. Solid-State Circuits,
vol. 54, no. 6, pp. 1586-1599, June 2019. doi: 10.1109/JSSC.2019.2902307.
[60] H. T. Nguyen and H. Wang, " A coupler-based differential mm-wave
Doherty power amplifier with impedance inverting and scaling baluns, "
IEEE J. Solid-State Circuits, vol. 51, no. 3, pp. 598-613, Mar. 2016. doi:
10.1109/JSSC.2020.2970708.
[61] R. Giofrè, A. Del Gaudio, and E. Limiti, " A 28 GHz MMIC Doherty
power amplifier in GaN on Si technology for 5G applications, " in Proc.
2019 IEEE MTT-S Int. Microw. Symp. (IMS), Boston, MA, pp. 611-613. doi:
10.23919/APMC.2018.8617664.
[62] J. Tsai and T. Huang, " A 38-46 GHz MMIC Doherty power amplifier
using post-distortion linearization, " IEEE Microw. Wireless Compon. Lett.,
vol. 17, no. 5, pp. 388-390, May 2007. doi: 10.1109/LMWC.2007.895726.
[63] L. Piazzon, R. Giofrè, P. Colantonio and F. Giannini, " Investigation of
the aM/pm distortion in Doherty power amplifiers, " in Proc. 2014 IEEE
Topical Conf. Power Amp. Wireless Radio Appl. (PAWR), Newport Beach,
CA, pp. 7-9. doi: 10.1109/PAWR.2014.6825729.

IEEE CIRCUITS AND SYSTEMS MAGAZINE 		

FOURTH QUARTER 2020



IEEE Circuits and Systems Magazine - Q4 2020

Table of Contents for the Digital Edition of IEEE Circuits and Systems Magazine - Q4 2020

Contents
IEEE Circuits and Systems Magazine - Q4 2020 - Cover1
IEEE Circuits and Systems Magazine - Q4 2020 - Cover2
IEEE Circuits and Systems Magazine - Q4 2020 - Contents
IEEE Circuits and Systems Magazine - Q4 2020 - 2
IEEE Circuits and Systems Magazine - Q4 2020 - 3
IEEE Circuits and Systems Magazine - Q4 2020 - 4
IEEE Circuits and Systems Magazine - Q4 2020 - 5
IEEE Circuits and Systems Magazine - Q4 2020 - 6
IEEE Circuits and Systems Magazine - Q4 2020 - 7
IEEE Circuits and Systems Magazine - Q4 2020 - 8
IEEE Circuits and Systems Magazine - Q4 2020 - 9
IEEE Circuits and Systems Magazine - Q4 2020 - 10
IEEE Circuits and Systems Magazine - Q4 2020 - 11
IEEE Circuits and Systems Magazine - Q4 2020 - 12
IEEE Circuits and Systems Magazine - Q4 2020 - 13
IEEE Circuits and Systems Magazine - Q4 2020 - 14
IEEE Circuits and Systems Magazine - Q4 2020 - 15
IEEE Circuits and Systems Magazine - Q4 2020 - 16
IEEE Circuits and Systems Magazine - Q4 2020 - 17
IEEE Circuits and Systems Magazine - Q4 2020 - 18
IEEE Circuits and Systems Magazine - Q4 2020 - 19
IEEE Circuits and Systems Magazine - Q4 2020 - 20
IEEE Circuits and Systems Magazine - Q4 2020 - 21
IEEE Circuits and Systems Magazine - Q4 2020 - 22
IEEE Circuits and Systems Magazine - Q4 2020 - 23
IEEE Circuits and Systems Magazine - Q4 2020 - 24
IEEE Circuits and Systems Magazine - Q4 2020 - 25
IEEE Circuits and Systems Magazine - Q4 2020 - 26
IEEE Circuits and Systems Magazine - Q4 2020 - 27
IEEE Circuits and Systems Magazine - Q4 2020 - 28
IEEE Circuits and Systems Magazine - Q4 2020 - 29
IEEE Circuits and Systems Magazine - Q4 2020 - 30
IEEE Circuits and Systems Magazine - Q4 2020 - 31
IEEE Circuits and Systems Magazine - Q4 2020 - 32
IEEE Circuits and Systems Magazine - Q4 2020 - 33
IEEE Circuits and Systems Magazine - Q4 2020 - 34
IEEE Circuits and Systems Magazine - Q4 2020 - 35
IEEE Circuits and Systems Magazine - Q4 2020 - 36
IEEE Circuits and Systems Magazine - Q4 2020 - 37
IEEE Circuits and Systems Magazine - Q4 2020 - 38
IEEE Circuits and Systems Magazine - Q4 2020 - 39
IEEE Circuits and Systems Magazine - Q4 2020 - 40
IEEE Circuits and Systems Magazine - Q4 2020 - 41
IEEE Circuits and Systems Magazine - Q4 2020 - 42
IEEE Circuits and Systems Magazine - Q4 2020 - 43
IEEE Circuits and Systems Magazine - Q4 2020 - 44
IEEE Circuits and Systems Magazine - Q4 2020 - 45
IEEE Circuits and Systems Magazine - Q4 2020 - 46
IEEE Circuits and Systems Magazine - Q4 2020 - 47
IEEE Circuits and Systems Magazine - Q4 2020 - 48
IEEE Circuits and Systems Magazine - Q4 2020 - 49
IEEE Circuits and Systems Magazine - Q4 2020 - 50
IEEE Circuits and Systems Magazine - Q4 2020 - 51
IEEE Circuits and Systems Magazine - Q4 2020 - 52
IEEE Circuits and Systems Magazine - Q4 2020 - 53
IEEE Circuits and Systems Magazine - Q4 2020 - 54
IEEE Circuits and Systems Magazine - Q4 2020 - 55
IEEE Circuits and Systems Magazine - Q4 2020 - 56
IEEE Circuits and Systems Magazine - Q4 2020 - 57
IEEE Circuits and Systems Magazine - Q4 2020 - 58
IEEE Circuits and Systems Magazine - Q4 2020 - 59
IEEE Circuits and Systems Magazine - Q4 2020 - 60
IEEE Circuits and Systems Magazine - Q4 2020 - 61
IEEE Circuits and Systems Magazine - Q4 2020 - 62
IEEE Circuits and Systems Magazine - Q4 2020 - 63
IEEE Circuits and Systems Magazine - Q4 2020 - 64
IEEE Circuits and Systems Magazine - Q4 2020 - 65
IEEE Circuits and Systems Magazine - Q4 2020 - 66
IEEE Circuits and Systems Magazine - Q4 2020 - 67
IEEE Circuits and Systems Magazine - Q4 2020 - 68
IEEE Circuits and Systems Magazine - Q4 2020 - 69
IEEE Circuits and Systems Magazine - Q4 2020 - 70
IEEE Circuits and Systems Magazine - Q4 2020 - 71
IEEE Circuits and Systems Magazine - Q4 2020 - 72
IEEE Circuits and Systems Magazine - Q4 2020 - 73
IEEE Circuits and Systems Magazine - Q4 2020 - 74
IEEE Circuits and Systems Magazine - Q4 2020 - 75
IEEE Circuits and Systems Magazine - Q4 2020 - 76
IEEE Circuits and Systems Magazine - Q4 2020 - 77
IEEE Circuits and Systems Magazine - Q4 2020 - 78
IEEE Circuits and Systems Magazine - Q4 2020 - 79
IEEE Circuits and Systems Magazine - Q4 2020 - 80
IEEE Circuits and Systems Magazine - Q4 2020 - 81
IEEE Circuits and Systems Magazine - Q4 2020 - 82
IEEE Circuits and Systems Magazine - Q4 2020 - 83
IEEE Circuits and Systems Magazine - Q4 2020 - 84
IEEE Circuits and Systems Magazine - Q4 2020 - 85
IEEE Circuits and Systems Magazine - Q4 2020 - 86
IEEE Circuits and Systems Magazine - Q4 2020 - 87
IEEE Circuits and Systems Magazine - Q4 2020 - 88
IEEE Circuits and Systems Magazine - Q4 2020 - Cover3
IEEE Circuits and Systems Magazine - Q4 2020 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q1
https://www.nxtbookmedia.com