IEEE Circuits and Systems Magazine - Q4 2021 - 21
[8] J. A. Yorke, H. W. Hethcote, and A. Nold, " Dynamics and control of
the transmission of gonorrhea, " Sexually Transmitted Dis., vol. 5, no. 2,
pp. 51-55, 1978.
[9] L. J. Allen, " Some discrete-time SI, SIR, and SIS epidemic models, "
Math. Biosci., vol. 124, no. 1, pp. 83-105, 1994. doi: 10.1016/0025-5564
(94)90025-6.
[10] G. MacDonald, " The analysis of equilibrium in malaria, " Tropical
Dis. Bull., vol. 49, pp. 813-829, 1952.
[11] J. Li, D. Blakeley, and R. J. Smith, " The failure of R0, " Comput. Math.
Methods Med., vol. 2011, p. 527,610, 2011.
[12] W. Mei, S. Mohagheghi, S. Zampieri, and F. Bullo, " On the dynamics
of deterministic epidemic propagation over networks, " Annu. Rev.
Control, vol. 44, pp. 116-128, 2017. doi: 10.1016/j.arcontrol.2017.09.002.
[13] H. W. Hethcote, " The mathematics of infectious diseases, " SIAM
Rev., vol. 42, no. 4, pp. 599-653, 2000. doi: 10.1137/S0036144500371907.
[14] F. Brauer and C. Castillo-Chavez, Mathematical Models in Population
Biology and Epidemiology. New York: Springer-Verlag, 2011.
[15] B. J. Coburn, B. G. Wagner, and S. Blower, " Modeling influenza epidemics
and pandemics: insights into the future of swine flu (H1N1), "
BMC Med., vol. 7, pp. 30-30, 2009. doi: 10.1186/1741-7015-7-30.
[16] T. W. Ng, G. Turinici, and A. Danchin, " A double epidemic model for
the SARS propagation, " BMC Infect. Dis., vol. 3, p. 19, 2003. doi: 10.1186/
1471-2334-3-19.
[17] J. Legrand, R. F. Grais, P. Y. Boelle, A. J. Valleron, and A. Flahault,
" Understanding the dynamics of Ebola epidemics. " Epidemiol. Infect.,
vol. 135, no. 4, pp. 610-621, 2007. doi: 10.1017/S0950268806007217.
[18] G. Giordano et al., " Modelling the COVID-19 epidemic and implementation
of population-wide interventions in Italy, " Nature Med.,
vol. 26, no. 6, pp. 855-860, 2020. doi: 10.1038/s41591-020-0883-7.
[19] L. Zhong, L. Mu, J. Li, J. Wang, Z. Yin, and D. Liu, " Early prediction
of the 2019 novel coronavirus outbreak in the Mainland China based
on simple mathematical model, " IEEE Access, vol. 8, pp. 51,761-51,769,
2020.
[20] F. Casella, " Can the COVID-19 epidemic be controlled on the basis
of daily test reports? " IEEE Control Syst. Lett., vol. 5, no. 3, pp. 1079-1084,
2021. doi: 10.1109/LCSYS.2020.3009912.
[21] R. Ross, The Prevention of Malaria. New York: Dutton, 1910.
[22] N. Bailey, The Mathematical Theory of Infectious Diseases and its
Applications, 2nd ed. London: Griffin, 1975.
[23] M. J. Keeling and P. Rohani, Modeling Infectious Diseases in Humans
and Animals. Princeton, NJ: Princeton Univ. Press, 2011.
[24] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A. Vespignani,
" Epidemic processes in complex networks, " Rev. Modern Phys.,
vol. 87, pp. 925-979, 2015. doi: 10.1103/RevModPhys.87.925.
[25] C. Nowzari, V. M. Preciado, and G. J. Pappas, " Analysis and control
of epidemics: A survey of spreading processes on complex networks, "
IEEE Control Syst. Mag., vol. 36, no. 1, pp. 26-46, 2016.
[26] A. Lajmanovich and J. A. Yorke, " A deterministic model for gonorrhea
in a nonhomogeneous population, " Math. Biosci., vol. 28, no. 3,
pp. 221-236, 1976. doi: 10.1016/0025-5564(76)90125-5.
[27] L. A. Meyers, M. Newman, and B. Pourbohloul, " Predicting epidemics
on directed contact networks, " J. Theor. Biol., vol. 240, no. 3,
pp. 400-418, 2006. doi: 10.1016/j.jtbi.2005.10.004.
[28] A. Khanafer, T. Bas¸ar, and B. Gharesifard, " Stability of epidemic
models over directed graphs: A positive systems approach, " Automatica,
vol. 74, pp. 126-134, 2016. doi: 10.1016/j.automatica.2016.07.037.
[29] A. Fall, A. Iggidr, G. Sallet, and J. J. Tewa, " Epidemiological models
and Lyapunov functions, " Math. Model. Natural Phenomena, vol. 2, no. 1,
pp. 62-83, 2007. doi: 10.1051/mmnp:2008011.
[30] P. Van Mieghem, J. Omic, and R. Kooij, " Virus spread in networks, "
IEEE/ACM Trans. Netw., vol. 17, no. 1, pp. 1-14, 2009. doi: 10.1109/TNET.
2008.925623.
[31] Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos, " Epidemic
spreading in real networks: An eigenvalue viewpoint, " in Proc. 22nd Int.
Symp. Reliable Distrib. Syst., 2003, pp. 25-34.
[32] B. Prasse and P. Van Mieghem, " Time-dependent solution of the
NIMFA equations around the epidemic threshold, " J. Math. Biol., vol. 81,
no. 6, pp. 1299-1355, 2020. doi: 10.1007/s00285-020-01542-6.
[33] D. A. Levin, Y. Peres, and E. L. Wilmer, Markov Chains and Mixing
Times. Providence, RI: American Mathematical Society, 2006.
[34] F. D. Sahneh, C. Scoglio, and P. Van Mieghem, " Generalized epidemic
mean-field model for spreading processes over multilayer complex
networks, " IEEE/ACM Trans. Netw., vol. 21, no. 5, pp. 1609-1620, 2013.
doi: 10.1109/TNET.2013.2239658.
FOURTH QUARTER 2021
[35] A. J. Ganesh, L. Massoulié, and D. F. Towsley, " The effect of network
topology on the spread of epidemics. " in Proc. IEEE INFOCOM, 2005,
pp. 1455-1466.
[36] P. V. Mieghem, " Decay towards the overall-healthy state in SIS epidemics
on networks, " 2013, arXiv:1310.3980.
[37] T. Mountford, J.-C. Mourrat, D. Valesin, and Q. Yao, " Exponential
extinction time of the contact process on finite graphs, " Stochastic Process.
Appl., vol. 126, no. 7, pp. 1974-2013, 2016. doi: 10.1016/j.spa.2016.
01.001.
[38] M. Draief and L. Massouliè, Epidemics and Rumours in Complex Networks.
Cambridge, UK: Cambridge Univ. Press, 2010.
[39] F. Fagnani and L. Zino, " Time to extinction for the SIS epidemic model:
New bounds on the tail probabilities, " IEEE Trans. Netw. Sci. Eng., vol. 6, no.
1, pp. 74-81, 2019. doi: 10.1109/TNSE.2017.2772320.
[40] E. Cator, R. van de Bovenkamp, and P. Van Mieghem, " Susceptibleinfected-susceptible
epidemics on networks with general infection and
cure times, " Phys. Rev. E, vol. 87, p. 062816, 2013.
[41] I. Z. Kiss, G. Röst, and Z. Vizi, " Generalization of pairwise models
to non-Markovian epidemics on networks, " Phys. Rev. Lett., vol. 115,
p. 078701, 2015.
[42] Q. Liu and P. Van Mieghem, " Burst of virus infection and a possibly
largest epidemic threshold of non-Markovian susceptible-infected-susceptible
processes on networks, " Phys. Rev. E, vol. 97, p. 022309, 2018.
[43] M. Ogura and V. M. Preciado, " Stability of SIS spreading processes
in networks with non-Markovian transmission and recovery, " IEEE
Trans. Control Netw. Syst., vol. 7, no. 1, pp. 349-359, 2020. doi: 10.1109/
TCNS.2019.2905131.
[44] M. Starnini, J. P. Gleeson, and M. Boguñá, " Equivalence between
non-Markovian and Markovian dynamics in epidemic spreading processes, "
Phys. Rev. Lett., vol. 118, p. 128,301, 2017.
[45] M. Feng, S.-M. Cai, M. Tang, and Y.-C. Lai, " Equivalence and its invalidation
between non-Markovian and Markovian spreading dynamics
on complex networks, " Nature Commun., vol. 10, no. 1, p. 3748, 2019. doi:
10.1038/s41467-019-11763-z.
[46] L. J. Allen and P. van den Driessche, " The basic reproduction number
in some discrete-time epidemic models, " J. Difference Equ. Appl.,
vol. 14, nos. 10-11, pp. 1127-1147, 2008.
[47] F. Brauer, Z. Feng, and C. Castillo-Chávez, " Discrete epidemic models, "
Math. Biosci. Eng., vol. 7, p. 1, 2010.
[48] P. E. Paré, J. Liu, C. L. Beck, B. E. Kirwan, and T. Bas¸ar, " Analysis,
estimation, and validation of discrete-time epidemic processes, " IEEE
Trans. Control Syst. Technol., vol. 28, no. 1, pp. 79-93, 2020. doi: 10.1109/
TCST.2018.2869369.
[49] F. Liu, S. Cui, X. Li, and M. Buss, " On the stability of the endemic equilibrium
of a discrete-time networked epidemic model, " IFAC-PapersOnLine,
2020. doi: 10.1016/j.ifacol.2020.12.304.
[50] B. Prasse and P. Van Mieghem, " The viral state dynamics of the
discrete-time NIMFA epidemic model, " IEEE Trans. Netw. Sci. Eng., vol.
7, no. 3, pp. 1667-1674, 2020.
[51] P. E. Paré, C. L. Beck, and T. Bas¸ar, " Modeling, estimation, and analysis
of epidemics over networks: An overview, " Annu. Rev. Control, vol.
50, pp. 345-360, 2020. doi: 10.1016/j.arcontrol.2020.09.003.
[52] S. Gómez, A. Arenas, J. Borge-Holthoefer, S. Meloni, and Y. Moreno,
" Discrete-time Markov chain approach to contact-based disease
spreading in complex networks, " EPL, vol. 89, no. 3, p. 38,009, 2010.
[53] H. J. Ahn and B. Hassibi, " On the mixing time of the SIS Markov
chain model for epidemic spread, " in Proc. 53rd IEEE Conf. Decis. Control,
2014, pp. 6221-6227.
[54] Z. Chen, " Discrete-time vs. continuous-time epidemic models in
networks, " IEEE Access, vol. 7, pp. 127,669-127,677, 2019.
[55] P. G. Fennell, S. Melnik, and J. P. Gleeson, " Limitations of discretetime
approaches to continuous-time contagion dynamics, " Phys. Rev. E,
vol. 94, p. 052125, 2016.
[56] L. Pellis, F. Ball, S. Bansal, K. Eames, T. House, V. Isham, and P. Trapman,
" Eight challenges for network epidemic models, " Epidemics, vol.
10, pp. 58-62, 2015. doi: 10.1016/j.epidem.2014.07.003.
[57] T. Gross and B. Blasius, " Adaptive coevolutionary networks: A review, "
J. Roy. Soc. Interface, vol. 5, no. 20, pp. 259-271, 2008. doi: 10.1098/
rsif.2007.1229.
[58] S. Bansal, J. Read, B. Pourbohloul, and L. A. Meyers, " The dynamic
nature of contact networks in infectious disease epidemiology, " J. Biol.
Dyn., vol. 4, no. 5, pp. 478-489, 2010. doi: 10.1080/17513758.2010.503376.
[59] P. Holme and J. Saramäki, " Temporal networks, " Phys. Rep., vol. 519,
pp. 97-125, 2012. doi: 10.1016/j.physrep.2012.03.001.
IEEE CIRCUITS AND SYSTEMS MAGAZINE
21
IEEE Circuits and Systems Magazine - Q4 2021
Table of Contents for the Digital Edition of IEEE Circuits and Systems Magazine - Q4 2021
Contents
IEEE Circuits and Systems Magazine - Q4 2021 - Cover1
IEEE Circuits and Systems Magazine - Q4 2021 - Cover2
IEEE Circuits and Systems Magazine - Q4 2021 - Contents
IEEE Circuits and Systems Magazine - Q4 2021 - 2
IEEE Circuits and Systems Magazine - Q4 2021 - 3
IEEE Circuits and Systems Magazine - Q4 2021 - 4
IEEE Circuits and Systems Magazine - Q4 2021 - 5
IEEE Circuits and Systems Magazine - Q4 2021 - 6
IEEE Circuits and Systems Magazine - Q4 2021 - 7
IEEE Circuits and Systems Magazine - Q4 2021 - 8
IEEE Circuits and Systems Magazine - Q4 2021 - 9
IEEE Circuits and Systems Magazine - Q4 2021 - 10
IEEE Circuits and Systems Magazine - Q4 2021 - 11
IEEE Circuits and Systems Magazine - Q4 2021 - 12
IEEE Circuits and Systems Magazine - Q4 2021 - 13
IEEE Circuits and Systems Magazine - Q4 2021 - 14
IEEE Circuits and Systems Magazine - Q4 2021 - 15
IEEE Circuits and Systems Magazine - Q4 2021 - 16
IEEE Circuits and Systems Magazine - Q4 2021 - 17
IEEE Circuits and Systems Magazine - Q4 2021 - 18
IEEE Circuits and Systems Magazine - Q4 2021 - 19
IEEE Circuits and Systems Magazine - Q4 2021 - 20
IEEE Circuits and Systems Magazine - Q4 2021 - 21
IEEE Circuits and Systems Magazine - Q4 2021 - 22
IEEE Circuits and Systems Magazine - Q4 2021 - 23
IEEE Circuits and Systems Magazine - Q4 2021 - 24
IEEE Circuits and Systems Magazine - Q4 2021 - 25
IEEE Circuits and Systems Magazine - Q4 2021 - 26
IEEE Circuits and Systems Magazine - Q4 2021 - 27
IEEE Circuits and Systems Magazine - Q4 2021 - 28
IEEE Circuits and Systems Magazine - Q4 2021 - 29
IEEE Circuits and Systems Magazine - Q4 2021 - 30
IEEE Circuits and Systems Magazine - Q4 2021 - 31
IEEE Circuits and Systems Magazine - Q4 2021 - 32
IEEE Circuits and Systems Magazine - Q4 2021 - 33
IEEE Circuits and Systems Magazine - Q4 2021 - 34
IEEE Circuits and Systems Magazine - Q4 2021 - 35
IEEE Circuits and Systems Magazine - Q4 2021 - 36
IEEE Circuits and Systems Magazine - Q4 2021 - 37
IEEE Circuits and Systems Magazine - Q4 2021 - 38
IEEE Circuits and Systems Magazine - Q4 2021 - 39
IEEE Circuits and Systems Magazine - Q4 2021 - 40
IEEE Circuits and Systems Magazine - Q4 2021 - 41
IEEE Circuits and Systems Magazine - Q4 2021 - 42
IEEE Circuits and Systems Magazine - Q4 2021 - 43
IEEE Circuits and Systems Magazine - Q4 2021 - 44
IEEE Circuits and Systems Magazine - Q4 2021 - 45
IEEE Circuits and Systems Magazine - Q4 2021 - 46
IEEE Circuits and Systems Magazine - Q4 2021 - 47
IEEE Circuits and Systems Magazine - Q4 2021 - 48
IEEE Circuits and Systems Magazine - Q4 2021 - 49
IEEE Circuits and Systems Magazine - Q4 2021 - 50
IEEE Circuits and Systems Magazine - Q4 2021 - 51
IEEE Circuits and Systems Magazine - Q4 2021 - 52
IEEE Circuits and Systems Magazine - Q4 2021 - Cover3
IEEE Circuits and Systems Magazine - Q4 2021 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q1
https://www.nxtbookmedia.com