IEEE Circuits and Systems Magazine - Q4 2021 - 22

[60] P. Holme, " Modern temporal network theory: A colloquium, " Eur.
Phys. J. B, vol. 88, no. 9, p. 234, 2015. doi: 10.1140/epjb/e2015-60657-4.
[61] S. Altizer, A. Dobson, P. Hosseini, P. Hudson, M. Pascual, and P. Rohani,
" Seasonality and the dynamics of infectious diseases, " Ecol. Lett.,
vol. 9, no. 4, pp. 467-484, 2006. doi: 10.1111/j.1461-0248.2005.00879.x.
[62] A.-L. Barabási, " The origin of bursts and heavy tails in human dynamics, "
Nature, vol. 435, no. 7039, pp. 207-211, 2005.
[63] K.-I. Goh and A.-L. Barabási, " Burstiness and memory in complex
systems, " EPL, vol. 81, no. 4, p. 48,002, 2008.
[64] S. Funk, M. Salathé, and V. A. Jansen, " Modelling the influence
of human behaviour on the spread of infectious diseases: A review, "
J. Roy. Soc. Interface, vol. 7, no. 50, pp. 1247-1256, 2010. doi: 10.1098/
rsif.2010.0142.
[65] F. Verelst, L. Willem, and P. Beutels, " Behavioural change models
for infectious disease transmission: A systematic review (2010-2015), "
J. Roy. Soc. Interface, vol. 13, p. 20,160,820, 2016.
[66] S. Lai et al., " Effect of non-pharmaceutical interventions to contain
COVID-19 in China, " Nature, vol. 585, no. 7825, pp. 410-413, 2020.
[67] M. E. J. Newman, " Spread of epidemic disease on networks, " Phys.
Rev. E, vol. 66, p. 016128, 2002.
[68] R. Pastor-Satorras and A. Vespignani, " Epidemic spreading in
scale-free networks, " Phys. Rev. Lett., vol. 86, pp. 3200-3203, 2001. doi:
10.1103/PhysRevLett.86.3200.
[69] A.-L. Barabási and R. Albert, " Emergence of scaling in random networks, "
Science, vol. 286, no. 5439, pp. 509-512, 1999.
[70] B. A. Prakash, H. Tong, N. Valler, M. Faloutsos, and C. Faloutsos,
" Virus propagation on time-varying networks: Theory and immunization
algorithms, " in Proc. 2010 Eur. Conf. Mach. Learn. Knowl. Discovery
Databases: Part III, 2010, p. 99-114.
[71] E. Valdano, L. Ferreri, C. Poletto, and V. Colizza, " Analytical computation
of the epidemic threshold on temporal networks, " Phys. Rev. X,
vol. 5, p. 021005, 2015.
[72] M. R. Sanatkar, W. N. White, B. Natarajan, C. M. Scoglio, and K. A.
Garrett, " Epidemic threshold of an SIS model in dynamic switching networks, "
IEEE Trans. Syst., Man, Cybern., Syst., vol. 46, no. 3, pp. 345-355,
2016. doi: 10.1109/TSMC.2015.2448061.
[73] Y. Zhang, X. Li, and A. V. Vasilakos, " Spectral analysis of epidemic
thresholds of temporal networks, " IEEE Trans. Cybern., vol. 50, no. 5, pp.
1965-1977, 2020. doi: 10.1109/TCYB.2017.2743003.
[74] M. A. Rami, V. S. Bokharaie, O. Mason, and F. R. Wirth, " Stability criteria
for SIS epidemiological models under switching policies, " Discrete
Continuous Dyn. Syst. B, vol. 19, no. 9, pp. 2865-2887, 2014. doi: 10.3934/
dcdsb.2014.19.2865.
[75] M. Ogura and V. M. Preciado, " Optimal design of switched networks
of positive linear systems via geometric programming, " IEEE
Trans. Control Netw. Syst., vol. 4, no. 2, pp. 213-222, 2017. doi: 10.1109/
TCNS.2015.2489339.
[76] L. Speidel, K. Klemm, V. M. Eguíluz, and N. Masuda, " Temporal interactions
facilitate endemicity in the susceptible-infected-susceptible
epidemic model, " New J. Phys., vol. 18, no. 7, p. 073013, 2016.
[77] E. Valdano, M. R. Fiorentin, C. Poletto, and V. Colizza, " Epidemic
threshold in continuous-time evolving networks, " Phys. Rev. Lett.,
vol. 120, p. 068302, 2018.
[78] P. E. Paré, C. L. Beck, and A. Nedic´, " Epidemic processes over timevarying
networks, " IEEE Trans. Control Netw. Syst., vol. 5, no. 3, pp. 1322-
1334, 2018. doi: 10.1109/TCNS.2017.2706138.
[79] N. Perra, B. Gonçalves, R. Pastor-Satorras, and A. Vespignani, " Activity
driven modeling of time varying networks, " Sci. Rep., vol. 2, p. 469,
2012. doi: 10.1038/srep00469.
[80] L. Zino, A. Rizzo, and M. Porfiri, " Continuous-time discrete-distribution
theory for activity-driven networks, " Phys. Rev. Lett., vol. 117, p. 228,302, 2016.
[81] K. Sun, A. Baronchelli, and N. Perra, " Contrasting effects of strong
ties on SIR and SIS processes in temporal networks, " Eur. Phys. J. B,
vol. 88, pp. 1-8, 2015. doi: 10.1140/epjb/e2015-60568-4.
[82] Y. Lei, X. Jiang, Q. Guo, Y. Ma, M. Li, and Z. Zheng, " Contagion processes
on the static and activity-driven coupling networks, " Phys. Rev.
E, vol. 93, p. 032308, 2016.
[83] M. Nadini, A. Rizzo, and M. Porfiri, " Epidemic spreading in temporal
and adaptive networks with static backbone, " IEEE Trans. Netw. Sci.
Eng., vol. 7, no. 1, pp. 549-561, 2020. doi: 10.1109/TNSE.2018.2885483.
[84] M. Nadini, K. Sun, E. Ubaldi, M. Starnini, A. Rizzo, and N. Perra, " Epidemic
spreading in modular time-varying networks, " Sci. Rep., vol. 8,
2018. doi: 10.1038/s41598-018-20908-x.
22
IEEE CIRCUITS AND SYSTEMS MAGAZINE
[85] C. Bongiorno, L. Zino, and A. Rizzo, " A novel framework for community
modeling and characterization in directed temporal networks, "
Appl. Netw. Sci., vol. 4, no. 1, p. 10, 2019. doi: 10.1007/s41109-019-0119-2.
[86] I. Pozzana, K. Sun, and N. Perra, " Epidemic spreading on activitydriven
networks with attractiveness, " Phys. Rev. E, vol. 96, 2017. doi:
10.1103/PhysRevE.96.042310.
[87] A. Moinet, M. Starnini, and R. Pastor-Satorras, " Burstiness and aging
in social temporal networks, " Phys. Rev. Lett., vol. 114, p. 108,701, 2015.
[88] L. Zino, A. Rizzo, and M. Porfiri, " Modeling memory effects in activity-driven
networks, " SIAM J. Appl. Dyn. Syst., vol. 17, no. 4, pp. 2830-
2854, 2018. doi: 10.1137/18M1171485.
[89] M. Mancastroppa, A. Vezzani, M. A. Muñoz, and R. Burioni, " Burstiness
in activity-driven networks and the epidemic threshold, " J. Statist.
Mech., Theory Exp., vol. 2019, no. 5, p. 053502, 2019.
[90] G. Petri and A. Barrat, " Simplicial activity driven model, " Phys. Rev.
Lett., vol. 121, p. 228,301, 2018.
[91] J. Leitch, K. A. Alexander, and S. Sengupta, " Toward epidemic
thresholds on temporal networks: a review and open questions, "
Appl. Netw. Sci., vol. 4, no. 1, p. 105, Nov. 2019. doi: 10.1007/s41109-019
-0230-4.
[92] A. E. F. Clementi, C. Macci, A. Monti, F. Pasquale, and R. Silvestri,
" Flooding Time of edge-Markovian evolving graphs, " SIAM J. Discrete
Math., vol. 24, no. 4, pp. 1694-1712, 2010. doi: 10.1137/090756053.
[93] I. Z. Kiss, L. Berthouze, T. J. Taylor, and P. L. Simon, " Modelling
approaches for simple dynamic networks and applications to disease
transmission models, " Proc. Roy. Soc. A, Math., Phys. Eng. Sci., vol. 468,
no. 2141, pp. 1332-1355, 2012.
[94] M. Taylor, T. J. Taylor, and I. Z. Kiss, " Epidemic threshold and control
in a dynamic network, " Phys. Rev. E, vol. 85, p. 016103, 2012.
[95] M. Ogura and V. M. Preciado, " Stability of spreading processes over
time-varying large-scale networks, " IEEE Trans. Netw. Sci. Eng., vol. 3,
no. 1, pp. 44-57, 2016. Doi: 10.1109/TNSE.2016.2516346.
[96] P. Van Mieghem et al., " Decreasing the spectral radius of a graph by
link removals, " Phys. Rev. E, vol. 84, p. 016101, 2011.
[97] V. M. Preciado and A. Jadbabaie, " Spectral analysis of virus spreading
in random geometric networks, " in Proc. 48h IEEE Conf. Decis. Control
held jointly with 2009 28th Chin. Control Conf., 2009, pp. 4802-4807.
[98] R. Pastor-Satorras and A. Vespignani, " Immunization of complex
networks, " Phys. Rev. E, vol. 65, p. 036104, 2002.
[99] F. Chung, P. Horn, and A. Tsiatas, " Distributing antidote using pagerank
vectors, " Internet Math., vol. 6, no. 2, pp. 237-254, 2009. doi: 10.1080/
15427951.2009.10129184.
[100] E. A. Enns, J. J. Mounzer, and M. L. Brandeau, " Optimal link removal
for epidemic mitigation: A two-way partitioning approach, " Math.
Biosci., vol. 235, no. 2, pp. 138-147, 2012. doi: 10.1016/j.mbs.2011.11.006.
[101] E. Gourdin, J. Omic, and P. Van Mieghem, " Optimization of network
protection against virus spread, " in Proc. 8th Int. Workshop Design Reliable
Commun. Netw., 2011, pp. 86-93.
[102] V. M. Preciado, M. Zargham, C. Enyioha, A. Jadbabaie, and G. J. Pappas,
" Optimal resource allocation for network protection against spreading
processes, " IEEE Trans. Control Netw. Syst., vol. 1, no. 1, pp. 99-108, 2014. doi:
10.1109/TCNS.2014.2310911.
[103] C. Nowzari, V. M. Preciado, and G. J. Pappas, " Optimal resource
allocation for control of networked epidemic models, " IEEE Trans. Control
Netw. Syst., vol. 4, no. 2, pp. 159-169, 2017. doi: 10.1109/TCNS.2015
.2482221.
[104] S. Ottaviano, F. De Pellegrini, S. Bonaccorsi, and P. Van Mieghem,
" Optimal curing policy for epidemic spreading over a community network
with heterogeneous population, " J. Complex Netw., vol. 6, no. 5,
pp. 800-829, 2017. doi: 10.1093/comnet/cnx060.
[105] C. Enyioha, A. Jadbabaie, V. Preciado, and G. Pappas, " Distributed
resource allocation for control of spreading processes, " in Proc. 2015
Eur. Control Conf., pp. 2216-2221.
[106] E. Ramírez-Llanos and S. Martínez, " Distributed discrete-time
optimization algorithms with applications to resource allocation in epidemics
control, " Optimal Control Appl. Methods, vol. 39, no. 1, pp. 160-
180, 2018. doi: 10.1002/oca.2340.
[107] V. S. Mai, A. Battou, and K. Mills, " Distributed algorithm for suppressing
epidemic spread in networks, " IEEE Control Syst. Lett., vol. 2,
no. 3, pp. 555-560, 2018. doi: 10.1109/LCSYS.2018.2844118.
[108] V. S. Mai and A. Battou, " Asynchronous distributed matrix balancing
and application to suppressing epidemic, " in Proc. 2019 Amer.
Control Conf., pp. 2177-2182.
FOURTH QUARTER 2021

IEEE Circuits and Systems Magazine - Q4 2021

Table of Contents for the Digital Edition of IEEE Circuits and Systems Magazine - Q4 2021

Contents
IEEE Circuits and Systems Magazine - Q4 2021 - Cover1
IEEE Circuits and Systems Magazine - Q4 2021 - Cover2
IEEE Circuits and Systems Magazine - Q4 2021 - Contents
IEEE Circuits and Systems Magazine - Q4 2021 - 2
IEEE Circuits and Systems Magazine - Q4 2021 - 3
IEEE Circuits and Systems Magazine - Q4 2021 - 4
IEEE Circuits and Systems Magazine - Q4 2021 - 5
IEEE Circuits and Systems Magazine - Q4 2021 - 6
IEEE Circuits and Systems Magazine - Q4 2021 - 7
IEEE Circuits and Systems Magazine - Q4 2021 - 8
IEEE Circuits and Systems Magazine - Q4 2021 - 9
IEEE Circuits and Systems Magazine - Q4 2021 - 10
IEEE Circuits and Systems Magazine - Q4 2021 - 11
IEEE Circuits and Systems Magazine - Q4 2021 - 12
IEEE Circuits and Systems Magazine - Q4 2021 - 13
IEEE Circuits and Systems Magazine - Q4 2021 - 14
IEEE Circuits and Systems Magazine - Q4 2021 - 15
IEEE Circuits and Systems Magazine - Q4 2021 - 16
IEEE Circuits and Systems Magazine - Q4 2021 - 17
IEEE Circuits and Systems Magazine - Q4 2021 - 18
IEEE Circuits and Systems Magazine - Q4 2021 - 19
IEEE Circuits and Systems Magazine - Q4 2021 - 20
IEEE Circuits and Systems Magazine - Q4 2021 - 21
IEEE Circuits and Systems Magazine - Q4 2021 - 22
IEEE Circuits and Systems Magazine - Q4 2021 - 23
IEEE Circuits and Systems Magazine - Q4 2021 - 24
IEEE Circuits and Systems Magazine - Q4 2021 - 25
IEEE Circuits and Systems Magazine - Q4 2021 - 26
IEEE Circuits and Systems Magazine - Q4 2021 - 27
IEEE Circuits and Systems Magazine - Q4 2021 - 28
IEEE Circuits and Systems Magazine - Q4 2021 - 29
IEEE Circuits and Systems Magazine - Q4 2021 - 30
IEEE Circuits and Systems Magazine - Q4 2021 - 31
IEEE Circuits and Systems Magazine - Q4 2021 - 32
IEEE Circuits and Systems Magazine - Q4 2021 - 33
IEEE Circuits and Systems Magazine - Q4 2021 - 34
IEEE Circuits and Systems Magazine - Q4 2021 - 35
IEEE Circuits and Systems Magazine - Q4 2021 - 36
IEEE Circuits and Systems Magazine - Q4 2021 - 37
IEEE Circuits and Systems Magazine - Q4 2021 - 38
IEEE Circuits and Systems Magazine - Q4 2021 - 39
IEEE Circuits and Systems Magazine - Q4 2021 - 40
IEEE Circuits and Systems Magazine - Q4 2021 - 41
IEEE Circuits and Systems Magazine - Q4 2021 - 42
IEEE Circuits and Systems Magazine - Q4 2021 - 43
IEEE Circuits and Systems Magazine - Q4 2021 - 44
IEEE Circuits and Systems Magazine - Q4 2021 - 45
IEEE Circuits and Systems Magazine - Q4 2021 - 46
IEEE Circuits and Systems Magazine - Q4 2021 - 47
IEEE Circuits and Systems Magazine - Q4 2021 - 48
IEEE Circuits and Systems Magazine - Q4 2021 - 49
IEEE Circuits and Systems Magazine - Q4 2021 - 50
IEEE Circuits and Systems Magazine - Q4 2021 - 51
IEEE Circuits and Systems Magazine - Q4 2021 - 52
IEEE Circuits and Systems Magazine - Q4 2021 - Cover3
IEEE Circuits and Systems Magazine - Q4 2021 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q1
https://www.nxtbookmedia.com