IEEE Circuits and Systems Magazine - Q1 2021 - 39
[74] S. Mittal, " A survey of techniques for approximate computing, " ACM
Comput. Surveys, vol. 48, no. 4, Mar. 2016. doi: 10.1145/2893356.
[75] H. Jiang, F. J. H. Santiago, H. Mo, L. Liu, and J. Han, " Approximate
arithmetic circuits: A survey, characterization, and recent applications, " Proc. IEEE, 2020.
[76] F. S. Snigdha, D. Sengupta, J. Hu, and S. S. Sapatnekar, " Optimal
design of JPEG hardware under the approximate computing paradigm, "
in Proc. 53nd ACM/EDAC/IEEE Design Autom. Conf. (DAC), 2016. doi:
10.1145/2897937.2898057.
[77] Y. Wang, H. Li, and X. Li, " Real-time meets approximate computing: An elastic CNN inference accelerator with adaptive trade-off between QoS and QoR, " in Proc. ACM/EDAC/IEEE Design Autom. Conf.
(DAC), 2017.
[78] S. Smithson, N. Onizawa, B. Meyer, W. Gross, and T. Hanyu, " Efficient CMOS invertible logic using stochastic computing, " IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 66, no. 6, pp. 2263-2274, 2019. doi:
10.1109/TCSI.2018.2889732.
[79] R. Cai et al., " A stochastic-computing based deep learning framework using adiabatic quantum-flux-parametron superconducting technology, " in Proc. ACM/IEEE 46th Annu. Int. Symp. Comput. Archit. (ISCA),
2019, pp. 567-578. doi: 10.1145/3307650.3322270.
[80] A. Chabi et al., " Towards ultra-efficient QCA reversible circuits, "
Microprocess. Microsyst., vol. 49, pp. 127 - 138, 2017. doi: 10.1016/j.micpro
.2016.09.015.
[81] A. Molahosseini, A. Asadpoor, A. Zarandi, and L. Sousa, " Towards
efficient modular adders based on reversible circuits, " in Proc. IEEE Int.
Symp. Circuits Syst. (ISCAS), 2018.
[82] C. H. Bennett, " Logical reversibility of computation, " IBM J.
Res. Develop., vol. 17, no. 6, pp. 525-532, Nov. 1973. doi: 10.1147/
rd.176.0525.
[83] T. S. G. Hinton and D. Ackley, " Boltzmann machines: Constraint
satisfaction networks that learn, " Dept. Comput. Sci., Carnegie-Mellon
Univ., Pittsburgh, PA, Tech. Rep. CMUCS-84-119, 1984.
[84] S. Sheikhfaal, S. Angizi, S. Sarmadi, M. Moaiyeri, and S. Sayedsalehi, " Designing efficient QCA logical circuits with power dissipation
analysis, " Microelectron. J., vol. 46, no. 6, pp. 462-471, 2015. doi: 10.1016/
j.mejo.2015.03.016.
[85] S. Oskouei and A. Ghaffari, " Designing a new reversible ALU by
QCA for reducing occupation area, " J. Supercomput., vol. 75, no. 8,
pp. 5118-5144, 2019. doi: 10.1007/s11227-019-02788-8.
[86] M. Sarkar, P. Ghosal, and S. Mohanty, " Minimal reversible circuit
synthesis on a DNA computer, " Natural Comput., vol. 16, pp. 463-472,
2017. doi: 10.1007/s11047-016-9553-6.
[87] B. Tsukerblat, A. Palii, J. Clemente-Juan, N. Suaud, and E. Coronado,
" Quantum cellular automata: A short overview of molecular problem, "
Acta Physica Polonica A, 2018. doi: 10.12693/APhysPolA.133.329.
[88] C. Bennettand and D. DiVincenzo, " Quantum information and
computation, " Nature, vol. 404, pp. 247-255, Mar. 2000. doi: 10.1038/
35005001.
[89] N. Kazemifard and K. Navi, " Implementing RNS arithmetic unit
through single electron quantum-dot cellular automata, " Int. J. Comput.
Appl., vol. 163, pp. 20-27, 2017. doi: 10.5120/ijca2017913500.
[90] O. Chen et al., " Adiabatic quantum-flux-parametron: Towards building extremely energy-efficient circuits and systems, " Sci. Rep., vol. 9,
no. 10514, 2019.
[91] N. Takeuchi, D. Ozawa, Y. Yamanashi, and N. Yoshikawa, " An adiabatic quantum flux parametron as an ultra-low-power logic device, " Superconductor Sci. Technol., vol. 26, no. 3, p. 035010, Jan. 2013.
[92] N. Takeuchi, T. Yamae, C. Ayala, H. Suzuki, and N. Yoshikawa, " An
adiabatic superconductor 8-bit adder with 24k b t energy dissipation
per junction, " Appl. Phys. Lett., vol. 114, no. 4, p. 042602, 2019.
[93] J. Peng, S. Sun, V. K. Narayana, V. J. Sorger, and T. El-Ghazawi, " Residue
number system arithmetic based on integrated nanophotonics, " Opt. Lett.,
vol. 43, no. 9, pp. 2026-2029, May 2018. doi: 10.1364/OL.43.002026.
[94] J. Peng, S. Sun, V. Narayana, V. Sorger, and T. El-Ghazawi, " Integrated photonics architectures for residue number system computations, "
in Proc. IEEE Int. Conf. Rebooting Comput. (ICRC), 2019.
[95] S. Sun et al., " Hybrid photonic-plasmonic nonblocking broadband
5 × 5 router for optical networks, " IEEE Photon. J., vol. 10, no. 2, pp. 1-12,
2018. doi: 10.1109/JPHOT.2017.2766087.
[96] L. Bakhtiar, E. Yaghoubi, S. Hamidi, and M. Hosseinzadeh, " Optical
RNS adder and multiplier, " Int. J. Comput. Appl. Technol., vol. 52, no. 1,
pp. 71-76, 2015. doi: 10.1504/IJCAT.2015.071421.
FIRST QUARTER 2021
[97] Y. Xie and J. Zhao, " Emerging memory technologies, " IEEE Micro,
vol. 39, no. 1, pp. 6-7, 2019. doi: 10.1109/MM.2019.2892165.
[98] N. Haron and S. Hamdioui, " Redundant residue number system
code for fault-tolerant hybrid memories, " ACM J. Emerg. Technol. Comput. Syst., vol. 7, no. 1, Jan. 2011. doi: 10.1145/1899390.1899394.
[99] S. Thirumala and S. Gupta, " Reconfigurable ferroelectric transistorpart I: Device design and operation, " IEEE Trans. Electron Devices,
vol. 66, no. 6, pp. 2771-2779, 2019. doi: 10.1109/TED.2019.2897960.
[100] " Ferroelectric transistor technologies, " I. C. D. Lab, 2019. [Online].
Available: https://engineering.purdue.edu/ICDL/research/ferroelectrics
[101] L. Chua, " Memristor-the missing circuit element, " IEEE Trans. Circuit
Theory, vol. 18, no. 5, pp. 507-519, 1971. doi: 10.1109/TCT.1971.1083337.
[102] S. Kvatinsky, " Real processing-in-memory with memristive memory processing unit (mMPU), " in Proc. IEEE 30th Int. Conf. Applicationspecific Syst., Archit. Process. (ASAP), 2019, pp. 142-148.
[103] P. Yao, H. Wu, B. Gao, J. Tang, and J. Y. H. Q. Q. Zhang, and
W. Zhang, " Fully hardware-implemented memristor convolutional neural network, " Nature, vol. 577, pp. 641-646, 2020. doi: 10.1038/s41586
-020-1942-4.
[104] J. Cook, " PIMS: Memristor-based processing-in-memory-andstorage, " Sandia National Lab., Albuquerque, New Mexico, Tech. Rep.
SAND2018-2095, Feb. 2018.
[105] S. Raj, D. Chakraborty, and S. K. Jha, " In-memory flow-based stochastic computing on memristor crossbars using bit-vector stochastic streams, "
in Proc. IEEE 17th Int. Conf. Nanotechnol. (NANO), 2017, pp. 855-860.
[106] T. Wu et al., " Brain-inspired computing exploiting carbon nanotube FETs and resistive RAM: Hyperdimensional computing case study, "
in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), 2018, pp. 492-494.
[107] C. Ma, Y. Sun, W. Qian, Z. Meng, R. Yang, and L. Jiang, " Go unary: A
novel synapse coding and mapping scheme for reliable ReRAM-based
neuromorphic computing, " in Proc. Conf. Design, Autom. Test Europe
(DATE), 2020, pp. 1432-1437.
[108] F. Guarnieri, M. Fliss, and C. Bancroft, " Making DNA add, " Science,
vol. 273, no. 5272, pp. 220-223, 1996.
[109] A. Fujiwara, K. Matsumoto, and W. Chen, " Procedures for logic
and arithmetic operations with DNA molecules, " Int. J. Found. Comput.
Sci., vol. 15, no. 03, pp. 461-474, 2004. doi: 10.1142/S0129054104002546.
[110] Z. Ignatova, I. Martínez-Pérez, and K.-H. Zimmermann, DNA Computing. New York: Springer-Verlag, 2008.
[111] M. Sarkar, P. Ghosal, and S. P. Mohanty, " Exploring the feasibility
of a DNA computer: Design of an ALU using sticker-based DNA model, "
IEEE Trans. NanoBiosci., vol. 16, no. 6, pp. 383-399, 2017. doi: 10.1109/
TNB.2017.2726682.
[112] H. Su, J. Xu, Q. Wang, F. Wang, and X. Zhou, " High-efficiency and
integrable DNA arithmetic and logic system based on strand displacement synthesis, " Nature Commun., vol. 10, no. 5390, 2019. doi: 10.1038/
s41467-019-13310-2.
[113] X. Zheng, B. Wang, C. Zhou, X. Wei, and Q. Zhang, " Parallel DNA arithmetic operation with one error detection based on 3-moduli set, " IEEE
Trans. NanoBiosci., vol. 15, no. 5, pp. 499-507, 2016. doi: 10.1109/TNB.2016.
2574359.
[114] W. Chang, " Fast parallel DNA-based algorithms for molecular computation: Quadratic congruence and factoring integers, " IEEE Trans.
NanoBiosci., vol. 11, no. 1, pp. 62-69, 2012.
[115] T. Monz et al., " Realization of the quantum Toffoli gate with
trapped ions, " Phys. Rev. Lett., vol. 102, p. 040501, Jan. 2009.
[116] J. Koch et al., " Charge-insensitive qubit design derived from the
cooper pair box, " Phys. Rev. A, vol. 76, no. 4, 2007. doi: 10.1103/PhysRevA
.76.042319.
[117] V. Bouchiat, D. Vion, P. Joyez, D. Esteve, and M. H. Devoret, " Quantum coherence with a single cooper pair, " Physica Scripta, vol. T76,
no. 1, p. 165, 1998. doi: 10.1238/Physica.Topical.076a00165.
[118] " IBM will soon launch a 53-qubit quantum computer, " IBM, 2019.
[Online]. Available: https://techcrunch.com/2019/09/18/ibm-will-soon
-launch-a-53-qubit-quantum-computer/
[119] A. Harrow, A. Hassidim, and S. Lloyd, " Quantum algorithm for linear systems of equations, " Phys. Rev. Lett., vol. 103, no. 15, Oct. 2009.
doi: 10.1103/PhysRevLett.103.150502.
[120] R. C. Gonzalez, " Deep convolutional neural networks [lecture
notes], " IEEE Signal Process. Mag., vol. 35, no. 6, pp. 79-87, Nov. 2018.
doi: 10.1109/MSP.2018.2842646.
[121] M. Abdelhamid and S. Koppula, " Applying the residue number system to network inference, " 2017, arXiv:1712.04614
IEEE CIRCUITS AND SYSTEMS MAGAZINE
39
https://engineering.purdue.edu/ICDL/research/ferroelectrics
https://techcrunch.com/2019/09/18/ibm-will-soon-launch-a-53-qubit-quantum-computer/
https://techcrunch.com/2019/09/18/ibm-will-soon-launch-a-53-qubit-quantum-computer/
IEEE Circuits and Systems Magazine - Q1 2021
Table of Contents for the Digital Edition of IEEE Circuits and Systems Magazine - Q1 2021
Contents
IEEE Circuits and Systems Magazine - Q1 2021 - Cover1
IEEE Circuits and Systems Magazine - Q1 2021 - Cover2
IEEE Circuits and Systems Magazine - Q1 2021 - Contents
IEEE Circuits and Systems Magazine - Q1 2021 - 2
IEEE Circuits and Systems Magazine - Q1 2021 - 3
IEEE Circuits and Systems Magazine - Q1 2021 - 4
IEEE Circuits and Systems Magazine - Q1 2021 - 5
IEEE Circuits and Systems Magazine - Q1 2021 - 6
IEEE Circuits and Systems Magazine - Q1 2021 - 7
IEEE Circuits and Systems Magazine - Q1 2021 - 8
IEEE Circuits and Systems Magazine - Q1 2021 - 9
IEEE Circuits and Systems Magazine - Q1 2021 - 10
IEEE Circuits and Systems Magazine - Q1 2021 - 11
IEEE Circuits and Systems Magazine - Q1 2021 - 12
IEEE Circuits and Systems Magazine - Q1 2021 - 13
IEEE Circuits and Systems Magazine - Q1 2021 - 14
IEEE Circuits and Systems Magazine - Q1 2021 - 15
IEEE Circuits and Systems Magazine - Q1 2021 - 16
IEEE Circuits and Systems Magazine - Q1 2021 - 17
IEEE Circuits and Systems Magazine - Q1 2021 - 18
IEEE Circuits and Systems Magazine - Q1 2021 - 19
IEEE Circuits and Systems Magazine - Q1 2021 - 20
IEEE Circuits and Systems Magazine - Q1 2021 - 21
IEEE Circuits and Systems Magazine - Q1 2021 - 22
IEEE Circuits and Systems Magazine - Q1 2021 - 23
IEEE Circuits and Systems Magazine - Q1 2021 - 24
IEEE Circuits and Systems Magazine - Q1 2021 - 25
IEEE Circuits and Systems Magazine - Q1 2021 - 26
IEEE Circuits and Systems Magazine - Q1 2021 - 27
IEEE Circuits and Systems Magazine - Q1 2021 - 28
IEEE Circuits and Systems Magazine - Q1 2021 - 29
IEEE Circuits and Systems Magazine - Q1 2021 - 30
IEEE Circuits and Systems Magazine - Q1 2021 - 31
IEEE Circuits and Systems Magazine - Q1 2021 - 32
IEEE Circuits and Systems Magazine - Q1 2021 - 33
IEEE Circuits and Systems Magazine - Q1 2021 - 34
IEEE Circuits and Systems Magazine - Q1 2021 - 35
IEEE Circuits and Systems Magazine - Q1 2021 - 36
IEEE Circuits and Systems Magazine - Q1 2021 - 37
IEEE Circuits and Systems Magazine - Q1 2021 - 38
IEEE Circuits and Systems Magazine - Q1 2021 - 39
IEEE Circuits and Systems Magazine - Q1 2021 - 40
IEEE Circuits and Systems Magazine - Q1 2021 - 41
IEEE Circuits and Systems Magazine - Q1 2021 - 42
IEEE Circuits and Systems Magazine - Q1 2021 - 43
IEEE Circuits and Systems Magazine - Q1 2021 - 44
IEEE Circuits and Systems Magazine - Q1 2021 - 45
IEEE Circuits and Systems Magazine - Q1 2021 - 46
IEEE Circuits and Systems Magazine - Q1 2021 - 47
IEEE Circuits and Systems Magazine - Q1 2021 - 48
IEEE Circuits and Systems Magazine - Q1 2021 - 49
IEEE Circuits and Systems Magazine - Q1 2021 - 50
IEEE Circuits and Systems Magazine - Q1 2021 - 51
IEEE Circuits and Systems Magazine - Q1 2021 - 52
IEEE Circuits and Systems Magazine - Q1 2021 - 53
IEEE Circuits and Systems Magazine - Q1 2021 - 54
IEEE Circuits and Systems Magazine - Q1 2021 - 55
IEEE Circuits and Systems Magazine - Q1 2021 - 56
IEEE Circuits and Systems Magazine - Q1 2021 - 57
IEEE Circuits and Systems Magazine - Q1 2021 - 58
IEEE Circuits and Systems Magazine - Q1 2021 - 59
IEEE Circuits and Systems Magazine - Q1 2021 - 60
IEEE Circuits and Systems Magazine - Q1 2021 - 61
IEEE Circuits and Systems Magazine - Q1 2021 - 62
IEEE Circuits and Systems Magazine - Q1 2021 - 63
IEEE Circuits and Systems Magazine - Q1 2021 - 64
IEEE Circuits and Systems Magazine - Q1 2021 - 65
IEEE Circuits and Systems Magazine - Q1 2021 - 66
IEEE Circuits and Systems Magazine - Q1 2021 - 67
IEEE Circuits and Systems Magazine - Q1 2021 - 68
IEEE Circuits and Systems Magazine - Q1 2021 - 69
IEEE Circuits and Systems Magazine - Q1 2021 - 70
IEEE Circuits and Systems Magazine - Q1 2021 - 71
IEEE Circuits and Systems Magazine - Q1 2021 - 72
IEEE Circuits and Systems Magazine - Q1 2021 - 73
IEEE Circuits and Systems Magazine - Q1 2021 - 74
IEEE Circuits and Systems Magazine - Q1 2021 - 75
IEEE Circuits and Systems Magazine - Q1 2021 - 76
IEEE Circuits and Systems Magazine - Q1 2021 - 77
IEEE Circuits and Systems Magazine - Q1 2021 - 78
IEEE Circuits and Systems Magazine - Q1 2021 - 79
IEEE Circuits and Systems Magazine - Q1 2021 - 80
IEEE Circuits and Systems Magazine - Q1 2021 - 81
IEEE Circuits and Systems Magazine - Q1 2021 - 82
IEEE Circuits and Systems Magazine - Q1 2021 - 83
IEEE Circuits and Systems Magazine - Q1 2021 - 84
IEEE Circuits and Systems Magazine - Q1 2021 - 85
IEEE Circuits and Systems Magazine - Q1 2021 - 86
IEEE Circuits and Systems Magazine - Q1 2021 - 87
IEEE Circuits and Systems Magazine - Q1 2021 - 88
IEEE Circuits and Systems Magazine - Q1 2021 - Cover3
IEEE Circuits and Systems Magazine - Q1 2021 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q1
https://www.nxtbookmedia.com