IEEE Circuits and Systems Magazine - Q1 2021 - 72

Marco Mercuri was born in Calabria,
Italy in 1985. He received the B.S. and
M.S. degrees in electronic engineering
from the University of Calabria (UNICAL), Italy, in 2006 and 2009, respectively, and the Ph.D. degree in electronic engineering from KU Leuven, Belgium, in 2015. He is
currently Senior Researcher at imec - Netherlands, Eindhoven, Netherlands. His research interests include microwave/RF radar systems and algorithms, contactless
health monitoring, biomedical applications, embedded
systems and wireless sensor networks. Dr. Mercuri is
the author and co-author of over 50 publications in peerreviewed journals, conferences, and books. He holds
several patents on radars for biomedical applications.
He was the recipient of the ISSCC 2019 Demonstration
Session Certificate of Recognition, 2013 IEEE MTT-S
Graduate Fellowship Award, and he obtained the second
place both to the 2013 IEEE President's Change the World
Competition (PCW) and to the 2013 IEEE MTT-S YouTube/YouKu Video Competition.
Prof. Dominique S chreur s ( S ' 9 0 M'97-SM'02-F'12) received the M.Sc.
degree in electronic engineering and the
Ph.D. degree from the University of Leuven (KU Leuven), Leuven, Belgium, in
1992 and 1997, respectively. She has
been a Visiting Scientist with Agilent Technologies, Santa
Rosa, CA, USA, ETH Zurich, Zurich, Switzerland, and the
National Institute of Standards and Technology, Boulder,
CO, USA. She is currently a Full Professor with KU Leuven,
where she is also the Chair of the Leuven LICT. Her current research interests include the microwave and millimeter-wave characterization and modeling of transistors,
nonlinear circuits, and bioliquids, and system design for
wireless communications and biomedical applications.
Prof. Schreurs served as President of the IEEE Microwave
Theory and Techniques Society (April 2018-2019), and
priory was Editor-in-Chief of the IEEE Transactions on Microwave Theory and Techniques as well as IEEE MTT-S
Distinguished Microwave Lecturer. She also served as
President of the ARFTG organization (2018-2019) and was
General Chair of the 2007, 2012, and 2018 Spring ARFTG
Conferences. In 2020, she serves as TPC chair of the European Microwave Conference (EuMC) and is also conference co-chair of the IEEE International Microwave Biomedical Conference (IMBioC).
References
[1] E. Yavari, " Distortion reduction and signal estimation in Doppler
radar physiological monitoring systems, " Ph.D. dissertation, Univ. of
Hawaii, Manoa, 2015.

72

IEEE CIRCUITS AND SYSTEMS MAGAZINE

[2] L. Ren, " Noncontact vital signs detection, " Univ. of Tennessee, 2017.
[3] H.-C. Kuo et al., " A fully integrated 60-GHz CMOS direct-conversion
Doppler radar RF sensor with clutter canceller for single-antenna noncontact human vital-signs detection, " IEEE Trans. Microw. Theory Techn.,
vol. 64, no. 4, pp. 1018-1028, 2016. doi: 10.1109/TMTT.2016.2536600.
[4] N. Andersen et al., " A 118-mW pulse-based radar SoC in 55-nm CMOS
for non-contact human vital signs detection, " IEEE J. Solid-State Circuits,
vol. 52, no. 12, pp. 3421-3433, 2017. doi: 10.1109/JSSC.2017.2764051.
[5] A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin, and G. T. A.
Kovacs, " Range correlation and I/Q performance benefits in single-chip
silicon Doppler radars for noncontact cardiopulmonary monitoring, "
IEEE Trans. Microw. Theory Techn., vol. 52, no. 3, pp. 838-848, 2004. doi:
10.1109/TMTT.2004.823552.
[6] N. T. P. Van, L. Tang, V. Demir, S. F. Hasan, N. D. Minh, and S. Mukhopadhyay, " Review-microwave radar sensing systems for search and
rescue purposes, " Sensors, vol. 19, no. 13, pp. 1-24, 2019. doi: 10.3390/
s19132879.
[7] M. Alizadeh, G. Shaker, J. C. M. D. Almeida, P. P. Morita, and S. Safavi-Naeini, " Remote monitoring of human vital signs using mm-Wave
FMCW Radar, " IEEE Access, vol. 7, pp. 54,958-54,968, 2019. doi: 10.1109/
ACCESS.2019.2912956.
[8] T. D. Randeny, " Multi-dimensional digital signal processing in radar
signature extraction, " Ph.D. dissertation, Univ. of Akron, Akron, OH, 2016.
[9] Q. Nguyen, T. Phan, and O. Kilic, " A hybrid approach and Fourier
analysis for detection human respiratory rate and heart beat, " in Proc.
IEEE/ACES Int. Conf. Wireless Inf. Technol., (ICWITS), 2016. doi: 10.1109/
ROPACES.2016.7465362.
[10] K. K. Shyu, L. J. Chiu, P. L. Lee, T. H. Tung, and S. H. Yang, " Detection
of breathing and heart rates in UWB radar sensor data using FVPIEFbased two-layer EEMD, " IEEE Sens. J., vol. 19, no. 2, pp. 774-784, 2019.
doi: 10.1109/JSEN.2018.2878607.
[11] R. J. Fontana, " Recent system applications of short-pulse ultrawideband (UWB) technology, " IEEE Trans. Microw. Theory Techn., vol.
52, no. 9, pp. 2087-2104, 2004. doi: 10.1109/TMTT.2004.834186.
[12] B. Li, Z. Zhou, W. Zou, D. Li, and C. Zhao, " Optimal waveforms design for ultra-wideband impulse radio sensors, " Sensors, vol. 10, no. 12,
pp. 11,038-11,063, 2010. doi: 10.3390/s101211038.
[13] J. Chóliz, Á. Hernández, and A. Valdovinos, " A framework for UWBbased communication and location tracking systems for wireless sensor networks, " Sensors, vol. 11, no. 9, pp. 9045-9068, 2011. doi: 10.3390/
s110909045.
[14] Decawave, " UWB regulations: A summary of worldwide telecommunications regulations governing the use of ultra-wideband radio, "
2018.
[15] " Worldwide UWB regulations between 3,1 and 10,6 GHz, " European
Telecommunications Standards Institute, vol. 1, pp. 1-64, 2016.
[16] Y.-H. Liu, S. Sheelavant, M. Mercuri, P. Mateman, and M. Babaie,
" An ultralow power burst-chirp UWB radar transceiver for indoor vital
signs and occupancy sensing in 40-nm CMOS " IEEE Solid-State Circuits
Lett., vol. 2, no. 11, pp. 256-259, 2019. doi: 10.1109/LSSC.2019.2951423.
[17] Y. Wang et al., " A 260-mW Ku-band FMCW transceiver for synthetic
aperture radar sensor with 1.48-GHz bandwidth in 65-nm CMOS technology, " IEEE Trans. Microw. Theory Techn., vol. 65, no. 11, pp. 4385-
4399, 2017. doi: 10.1109/TMTT.2017.2700271.
[18] T. S. Chu, J. Roderick, S. H. Chang, T. Mercer, C. Du, and H. Hashemi,
" A short-range UWB impulse-radio CMOS sensor for human feature detection, " in Proc. IEEE Int. Solid-State Circuits Conf., 2011, pp. 294-295.
[19] L. Lou et al., " A 253mW/channel 4TX/4RX pulsed chirping phasedarray radar TRX in 65nm CMOS for X-band synthetic- aperture radar
imaging, " in Proc. IEEE Int. Solid-State Circuits Conf., 2018, pp. 160-162.
doi: 10.1109/ISSCC.2018.8310233.
[20] D. Obeid et al., " Position-free vital sign monitoring : Measurements
and processing, " HAL, France, 2016, p. 25.
[21] Y. Wang, Q. Liu, and A. E. Fathy, " CW and pulse-Doppler radar processing
based on FPGA for human sensing applications, " IEEE Trans. Geosci. Remote
Sens., vol. 51, no. 5, pp. 3097-3107, 2013. doi: 10.1109/TGRS.2012.2217975.
[22] J. J. Saluja, J. J. Casanova, and J. Lin, " A supervised machine learning algorithm for heart-rate detection using Doppler motion-sensing
radar, " IEEE J. Electromagn. RF Microw. Med. Biol., vol. 7249, no. C, 2019.
[23] X. Yang, G. Sun, and K. Ishibashi, " Non-contact acquisition of respiration and heart rates using Doppler radar with time domain peakdetection algorithm, " in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.,
EMBS, 2017, pp. 2847-2850. doi: 10.1109/EMBC.2017.8037450.

FIRST QUARTER 2021



IEEE Circuits and Systems Magazine - Q1 2021

Table of Contents for the Digital Edition of IEEE Circuits and Systems Magazine - Q1 2021

Contents
IEEE Circuits and Systems Magazine - Q1 2021 - Cover1
IEEE Circuits and Systems Magazine - Q1 2021 - Cover2
IEEE Circuits and Systems Magazine - Q1 2021 - Contents
IEEE Circuits and Systems Magazine - Q1 2021 - 2
IEEE Circuits and Systems Magazine - Q1 2021 - 3
IEEE Circuits and Systems Magazine - Q1 2021 - 4
IEEE Circuits and Systems Magazine - Q1 2021 - 5
IEEE Circuits and Systems Magazine - Q1 2021 - 6
IEEE Circuits and Systems Magazine - Q1 2021 - 7
IEEE Circuits and Systems Magazine - Q1 2021 - 8
IEEE Circuits and Systems Magazine - Q1 2021 - 9
IEEE Circuits and Systems Magazine - Q1 2021 - 10
IEEE Circuits and Systems Magazine - Q1 2021 - 11
IEEE Circuits and Systems Magazine - Q1 2021 - 12
IEEE Circuits and Systems Magazine - Q1 2021 - 13
IEEE Circuits and Systems Magazine - Q1 2021 - 14
IEEE Circuits and Systems Magazine - Q1 2021 - 15
IEEE Circuits and Systems Magazine - Q1 2021 - 16
IEEE Circuits and Systems Magazine - Q1 2021 - 17
IEEE Circuits and Systems Magazine - Q1 2021 - 18
IEEE Circuits and Systems Magazine - Q1 2021 - 19
IEEE Circuits and Systems Magazine - Q1 2021 - 20
IEEE Circuits and Systems Magazine - Q1 2021 - 21
IEEE Circuits and Systems Magazine - Q1 2021 - 22
IEEE Circuits and Systems Magazine - Q1 2021 - 23
IEEE Circuits and Systems Magazine - Q1 2021 - 24
IEEE Circuits and Systems Magazine - Q1 2021 - 25
IEEE Circuits and Systems Magazine - Q1 2021 - 26
IEEE Circuits and Systems Magazine - Q1 2021 - 27
IEEE Circuits and Systems Magazine - Q1 2021 - 28
IEEE Circuits and Systems Magazine - Q1 2021 - 29
IEEE Circuits and Systems Magazine - Q1 2021 - 30
IEEE Circuits and Systems Magazine - Q1 2021 - 31
IEEE Circuits and Systems Magazine - Q1 2021 - 32
IEEE Circuits and Systems Magazine - Q1 2021 - 33
IEEE Circuits and Systems Magazine - Q1 2021 - 34
IEEE Circuits and Systems Magazine - Q1 2021 - 35
IEEE Circuits and Systems Magazine - Q1 2021 - 36
IEEE Circuits and Systems Magazine - Q1 2021 - 37
IEEE Circuits and Systems Magazine - Q1 2021 - 38
IEEE Circuits and Systems Magazine - Q1 2021 - 39
IEEE Circuits and Systems Magazine - Q1 2021 - 40
IEEE Circuits and Systems Magazine - Q1 2021 - 41
IEEE Circuits and Systems Magazine - Q1 2021 - 42
IEEE Circuits and Systems Magazine - Q1 2021 - 43
IEEE Circuits and Systems Magazine - Q1 2021 - 44
IEEE Circuits and Systems Magazine - Q1 2021 - 45
IEEE Circuits and Systems Magazine - Q1 2021 - 46
IEEE Circuits and Systems Magazine - Q1 2021 - 47
IEEE Circuits and Systems Magazine - Q1 2021 - 48
IEEE Circuits and Systems Magazine - Q1 2021 - 49
IEEE Circuits and Systems Magazine - Q1 2021 - 50
IEEE Circuits and Systems Magazine - Q1 2021 - 51
IEEE Circuits and Systems Magazine - Q1 2021 - 52
IEEE Circuits and Systems Magazine - Q1 2021 - 53
IEEE Circuits and Systems Magazine - Q1 2021 - 54
IEEE Circuits and Systems Magazine - Q1 2021 - 55
IEEE Circuits and Systems Magazine - Q1 2021 - 56
IEEE Circuits and Systems Magazine - Q1 2021 - 57
IEEE Circuits and Systems Magazine - Q1 2021 - 58
IEEE Circuits and Systems Magazine - Q1 2021 - 59
IEEE Circuits and Systems Magazine - Q1 2021 - 60
IEEE Circuits and Systems Magazine - Q1 2021 - 61
IEEE Circuits and Systems Magazine - Q1 2021 - 62
IEEE Circuits and Systems Magazine - Q1 2021 - 63
IEEE Circuits and Systems Magazine - Q1 2021 - 64
IEEE Circuits and Systems Magazine - Q1 2021 - 65
IEEE Circuits and Systems Magazine - Q1 2021 - 66
IEEE Circuits and Systems Magazine - Q1 2021 - 67
IEEE Circuits and Systems Magazine - Q1 2021 - 68
IEEE Circuits and Systems Magazine - Q1 2021 - 69
IEEE Circuits and Systems Magazine - Q1 2021 - 70
IEEE Circuits and Systems Magazine - Q1 2021 - 71
IEEE Circuits and Systems Magazine - Q1 2021 - 72
IEEE Circuits and Systems Magazine - Q1 2021 - 73
IEEE Circuits and Systems Magazine - Q1 2021 - 74
IEEE Circuits and Systems Magazine - Q1 2021 - 75
IEEE Circuits and Systems Magazine - Q1 2021 - 76
IEEE Circuits and Systems Magazine - Q1 2021 - 77
IEEE Circuits and Systems Magazine - Q1 2021 - 78
IEEE Circuits and Systems Magazine - Q1 2021 - 79
IEEE Circuits and Systems Magazine - Q1 2021 - 80
IEEE Circuits and Systems Magazine - Q1 2021 - 81
IEEE Circuits and Systems Magazine - Q1 2021 - 82
IEEE Circuits and Systems Magazine - Q1 2021 - 83
IEEE Circuits and Systems Magazine - Q1 2021 - 84
IEEE Circuits and Systems Magazine - Q1 2021 - 85
IEEE Circuits and Systems Magazine - Q1 2021 - 86
IEEE Circuits and Systems Magazine - Q1 2021 - 87
IEEE Circuits and Systems Magazine - Q1 2021 - 88
IEEE Circuits and Systems Magazine - Q1 2021 - Cover3
IEEE Circuits and Systems Magazine - Q1 2021 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q1
https://www.nxtbookmedia.com