IEEE Circuits and Systems Magazine - Q1 2021 - 73

[24] M. Li, and J. Lin, " Wavelet-transform-based data-length-variation
technique for fast heart rate detection using 5.8-GHz CW Doppler radar, " IEEE Trans. Microw. Theory Techn., vol. 2018-Janua, 2018.
[25] A. Vorobyov, E. Daskalaki, and J. Farserotu, " Feasibility of remote
vital signs sensing with a mm-Wave CW reflectometer, " in Proc. IEEE
38th Int. Conf. Electron. Nanotechnol., 2018, pp. 417-421.
[26] V. L. Petrovic, M. M. Jankovic, A. V. Lupsic, V. R. Mihajlovic, and J.
S. Popovic-Bozovic, " High-accuracy real-time monitoring of heart rate
variability using 24 GHz continuous-wave Doppler radar, " IEEE Access,
vol. 7, pp. 74,721-74,733, 2019. doi: 10.1109/ACCESS.2019.2921240.
[27] T. W. Hsu and C. H. Tseng, " Compact 24-GHz Doppler radar module
for non-contact human vital-sign detection, " in Proc. Int. Symp. Antennas Propag. (ISAP 2016), 2017, pp. 994-995.
[28] M. Nosrati and N. Tavassolian, " High-accuracy heart rate variability monitoring using Doppler radar based on Gaussian pulse train modeling and FTPR algorithm, " IEEE Trans. Microw. Theory Techn., vol. 66,
no. 1, pp. 556-567, 2018. doi: 10.1109/TMTT.2017.2721407.
[29] P. Li and N. Huo, " A portable 24GHz Doppler radar system for distant human vital sign monitoring, " in Proc. 5th Int. Conf. Inf. Sci. Control
Eng., 2019, pp. 1050-1052. doi: 10.1109/ICISCE.2018.00216.
[30] C. Li et al., " A method for remotely sensing vital signs of human
subjects outdoors, " Sensors, vol. 15, no. 7, pp. 14,830-14,844, 2015. doi:
10.3390/s150714830.
[31] F. Quaiyum, N. Tran, T. Phan, P. Theilmann, A. E. Fathy, and O. Kilic, " Electromagnetic modeling of vital sign detection and human motion sensing validated by noncontact radar measurements, " IEEE J. Electromagn. RF Microw.
Med. Biol., vol. 2, no. 1, pp. 40-47, 2018. doi: 10.1109/JERM.2018.2807978.
[32] L. Qiu, T. Jin, J. Zhang, B. Lu, and Z. Zhou, " A singular spectrum
analysis based human life signal detection, " in Proc. Progress Electromagn. Res. Symp., 2016, pp. 4295-4298. doi: 10.1109/PIERS.2016.7735605.
[33] M. Mercuri et al., " A direct phase-tracking Doppler radar using
wavelet independent component analysis for non-contact respiratory
and heart rate monitoring, " IEEE Trans. Biomed. Circuits Syst., vol. 12, no.
3, pp. 632-643, 2018. doi: 10.1109/TBCAS.2018.2813013.
[34] T. Zhangt, G. Valerio, J. Sarrazin, and D. Istrate, " Non-contact estimation at 60 GHz for human vital signs monitoring using a robust optimization algorithm, " in Proc. IEEE Antennas Propag. Soc. Int. Symp.,
2016, pp. 1165-1166. doi: 10.1109/APS.2016.7696290.
[35] A. Rahman, " Doppler radar techniques for distinct respiratory pattern recognition and subject identification, " Ph.D. dissertation, Univ. of
Hawai'i, Honolulu, 2017.
[36] R. Qian, T. Jin, H. Li, and Y. Dai, " WT-based data-length-variation
technique for fast heart rate detection, " in Proc. Progress Electromagn.
Res. Symp., 2018, vol. 2018-Augus, pp. 399-404.
[37] Y. Rong and D. W. Bliss, " Harmonics-based multiple heartbeat detection at equal distance using UWB impulse radar, " in Proc. IEEE Radar
Conf., 2018, pp. 1101-1105. doi: 10.1109/RADAR.2018.8378715.
[38] F. Khan and S. H. Cho, " A detailed algorithm for vital sign monitoring of a stationary/non-stationary human through IR-UWB radar, " Sensors, vol. 17, no. 2, 2017. doi: 10.3390/s17020290.
[39] C. Eren, S. Karamzadeh, and M. Karatal, " The artifacts of human
physical motions on vital signs monitoring, " in Proc. Sci. Meeting Elect.Electron. Biomed. Eng. Comput. Sci., 2019, no. 1.
[40] M. L. Tudose, A. Anghel, R. Cacoveanu, and M. Datcu, " Pulse radar
with field-programmable gate array range compression for real time
displacement and vibration monitoring, " Sensors, vol. 19, no. 1, 2018.
doi: 10.3390/s19010082.
[41] H.-S. Cho and Y.-J. Park, " Novel design for heart rate detection using
UWB impulse radar on Android platform, " IEEJ Trans. Electr. Electron.
Eng., vol. 13, no. 5, pp. 799-800, 2018. doi: 10.1002/tee.22632.
[42] E. Schires, P. Georgiou, and T. S. Lande, " Vital sign monitoring
through the back using an UWB impulse radar with body coupled antennas, " IEEE Trans. Biomed. Circuits Syst., vol. 12, no. 2, pp. 292-302,
2018. doi: 10.1109/TBCAS.2018.2799322.
[43] M. A. Aseeri, " Feasibility of mapping a pulsed RADAR system to FPGA-ASIC and hybrid architectures, " in Proc. IEEE Int. Conf. Emerg. Technol. Innov. Bus. Pract. Transform. Soc., 2016, no. September, pp. 85-89.
[44] K.-C. Tsao, L. Lee, T.-S. Chu, and Y.-H. Huang, " A two-stage reconstruction processor for human detection in compressive sensing CMOS
radar, " Sensors, vol. 18, no. 4, 2018. doi: 10.3390/s18041106.
[45] C.-H. Hsieh, Y.-F. Chiu, Y.-H. Shen, T.-S. Chu, and Y.-H. Huang, " A
UWB radar signal processing platform for real-time human respiratory
feature extraction based on four-segment linear waveform model, "
FIRST QUARTER 2021

IEEE Trans. Biomed. Circuits Syst., vol. 10, no. 1, pp. 219-230, 2016. doi:
10.1109/TBCAS.2014.2376956.
[46] Y. Rong and D. W. Bliss, " Direct RF signal processing for heart-rate
monitoring using UWB impulse radar, " in Proc. Conf. Signals, Syst. Comput., 2019, vol. 2018-Octob, pp. 1215-1219.
[47] H.-S. Cho, Y.-J. Park, and H.-K. Lyu, " Robust heart rate detection
method using UWB impulse radar, " in Proc. Int. Conf. Inf. Commun. Technol. Convergence, 2016, pp. 1138-1142. doi: 10.1109/ICTC.2016.7763389.
[48] N. Shruthi, P. Mathur, and D. G. Kurup, " Performance of ultra wideband (UWB) pulsed Doppler radar for heart rate and respiration rate
monitoring in noise, " in Proc. Int. Conf. Adv. Comput., Commun. Inf., 2018,
pp. 722-725. doi: 10.1109/ICACCI.2018.8554482.
[49] L. Ren, H. Wang, K. Naishadham, O. Kilic, and A. E. Fathy, " Phasebased methods for heart rate detection using UWB impulse Doppler
radar, " IEEE Trans. Microw. Theory Techn., vol. 64, no. 10, pp. 3319-3331,
2016. doi: 10.1109/TMTT.2016.2597824.
[50] L. Ren, Y. S. Koo, H. Wang, Y. Wang, Q. Liu, and A. E. Fathy, " Noncontact multiple heartbeats detection and subject localization using UWB
impulse Doppler radar, " IEEE Microw. Wireless Compon. Lett., vol. 25, no.
10, pp. 690-692, 2015. doi: 10.1109/LMWC.2015.2463214.
[51] R. Ernst, " Vital Sign Radar, " Master Thesis, Halmstad University,
Sweden, 2016.
[52] R. Qian, D. Jiang, and W. Fu, " FPGA implementation of closed-loop
compensation for LFMCW signal non-linear distortions, " IET Signal Process., vol. 13, no. 2, pp. 192-198, 2019. doi: 10.1049/iet-spr.2018.5298.
[53] T. M. Samy, M. S. Abdel-Latif, S. A. Elgamel, and F. M. Ahmed, " FPGA
implementation of pulsed noise interference against LFM radar, " in Proc.
12th Int. Conf. Comput. Eng. Syst., 2018, vol. 2018-Janua, pp. 695-700.
[54] H. Eugin and J. Lee, " Hardware architecture design and implementation for FMCW radar signal processing algorithm, " in Proc. Conf. Des.
Archit. Signal Image Process. (DASIP), 2015, vol. 2015-May, pp. 1-6.
[55] F. Liang et al., " Detection of multiple stationary humans using UWB
MIMO radar, " Sensors, vol. 16, no. 11, 2016. doi: 10.3390/s16111922.
[56] A. N. Gaikwad and K. S. Dongre, " Improvement in detection of human life sign signal hidden behind the wall using clutter reduction technique, " in Proc. Int. Conf. Emerg. Trends Commun. Technol., 2017. doi:
10.1109/ETCT.2016.7882972.
[57] T. Phan, O. Kilic, S. Nahar, L. Ren, and A. E. Fathy, " Accuracy investigation of SFCW radar in human vital signs detection for subject's relative position, " in IEEE Antennas Propag. Soc. Int. Symp., Proc., 2017, vol.
2017-Janua, pp. 577-578. doi: 10.1109/APUSNCURSINRSM.2017.8072331.
[58] A. E. Fathy, L. Ren, S. Nahar, and O. Kilic, " Overview of human vital signs detection using radar techniques, " in IEEE Antennas Propag.
Soc. Int. Symp., Proc., 2017, vol. 2017-Janua, pp. 1229-1230. doi: 10.1109/
APUSNCURSINRSM.2017.8072657.
[59] J. H. Park, Y. J. Jeong, G. E. Lee, J. T. Oh, and J. R. Yang, " 915-MHz
continuous-wave Doppler radar sensor for detection of vital signs, "
Electronics, vol. 8, no. 8, 2019. doi: 10.3390/electronics8050561.
[60] Y.-H. Liu et al., " A 680 µW burst-chirp UWB radar transceiver for vital
signs and occupancy sensing up to 15m distance, " in Proc. IEEE Int. SolidState Circuits Conf., 2019, pp. 166-168. doi: 10.1109/ISSCC.2019.8662536.
[61] M. Mercuri, Y.-H. Liu, S. Sheelavant, S. Polito, T. Torfs, and C. Van Hoof, " Digital linear discrete FMCW radar for healthcare applications, " 2019, pp. 144-147.
[62] B. Ria Ghosh, " Hardware implementation of real time beat detection and classification algorithm for automated ECG analysis, " Master
thesis, Univ. of Texas, Dallas, 2018.
[63] A. N. Gaikwad and K. S. Dongre, " Improvement in detection of human life sign signal hidden behind the wall using clutter reduction technique, " in Proc. Int. Conf. Emerg. Trends Commun. Technol., (ETCT 2016),
2017. doi: 10.1109/ETCT.2016.7882972.
[64] M. Mercuri, I. R. Lorato, Y.-H. Liu, F. Wieringa, C. Van Hoof, and
T. Torfs, " Vital-sign monitoring and spatial tracking of multiple people
using a contactless radar-based sensor, " Nat. Electron., vol. 2, no. 6, pp.
252-262, 2019. doi: 10.1038/s41928-019-0258-6.
[65] J. Tu, T. Hwang, and J. Lin, " Respiration rate measurement under
1-D body motion using single continuous-wave Doppler radar vital sign
detection system, " IEEE Trans. Microw. Theory Techn., vol. 64, no. 6, pp.
1937-1946, 2016. doi: 10.1109/TMTT.2016.2560159.
[66] C. Li and J. Lin, " Random body movement cancellation in Doppler
radar vital sign detection, " IEEE Trans. Microw. Theory Techn., vol. 56,
no. 12, pp. 3143-3152, 2008. doi: 10.1109/TMTT.2008.2007139.
[67] C. Gu, G. Wang, Y. Li, T. Inoue, and C. Li, " A hybrid radar-camera sensing system with phase compensation for random body
IEEE CIRCUITS AND SYSTEMS MAGAZINE

73



IEEE Circuits and Systems Magazine - Q1 2021

Table of Contents for the Digital Edition of IEEE Circuits and Systems Magazine - Q1 2021

Contents
IEEE Circuits and Systems Magazine - Q1 2021 - Cover1
IEEE Circuits and Systems Magazine - Q1 2021 - Cover2
IEEE Circuits and Systems Magazine - Q1 2021 - Contents
IEEE Circuits and Systems Magazine - Q1 2021 - 2
IEEE Circuits and Systems Magazine - Q1 2021 - 3
IEEE Circuits and Systems Magazine - Q1 2021 - 4
IEEE Circuits and Systems Magazine - Q1 2021 - 5
IEEE Circuits and Systems Magazine - Q1 2021 - 6
IEEE Circuits and Systems Magazine - Q1 2021 - 7
IEEE Circuits and Systems Magazine - Q1 2021 - 8
IEEE Circuits and Systems Magazine - Q1 2021 - 9
IEEE Circuits and Systems Magazine - Q1 2021 - 10
IEEE Circuits and Systems Magazine - Q1 2021 - 11
IEEE Circuits and Systems Magazine - Q1 2021 - 12
IEEE Circuits and Systems Magazine - Q1 2021 - 13
IEEE Circuits and Systems Magazine - Q1 2021 - 14
IEEE Circuits and Systems Magazine - Q1 2021 - 15
IEEE Circuits and Systems Magazine - Q1 2021 - 16
IEEE Circuits and Systems Magazine - Q1 2021 - 17
IEEE Circuits and Systems Magazine - Q1 2021 - 18
IEEE Circuits and Systems Magazine - Q1 2021 - 19
IEEE Circuits and Systems Magazine - Q1 2021 - 20
IEEE Circuits and Systems Magazine - Q1 2021 - 21
IEEE Circuits and Systems Magazine - Q1 2021 - 22
IEEE Circuits and Systems Magazine - Q1 2021 - 23
IEEE Circuits and Systems Magazine - Q1 2021 - 24
IEEE Circuits and Systems Magazine - Q1 2021 - 25
IEEE Circuits and Systems Magazine - Q1 2021 - 26
IEEE Circuits and Systems Magazine - Q1 2021 - 27
IEEE Circuits and Systems Magazine - Q1 2021 - 28
IEEE Circuits and Systems Magazine - Q1 2021 - 29
IEEE Circuits and Systems Magazine - Q1 2021 - 30
IEEE Circuits and Systems Magazine - Q1 2021 - 31
IEEE Circuits and Systems Magazine - Q1 2021 - 32
IEEE Circuits and Systems Magazine - Q1 2021 - 33
IEEE Circuits and Systems Magazine - Q1 2021 - 34
IEEE Circuits and Systems Magazine - Q1 2021 - 35
IEEE Circuits and Systems Magazine - Q1 2021 - 36
IEEE Circuits and Systems Magazine - Q1 2021 - 37
IEEE Circuits and Systems Magazine - Q1 2021 - 38
IEEE Circuits and Systems Magazine - Q1 2021 - 39
IEEE Circuits and Systems Magazine - Q1 2021 - 40
IEEE Circuits and Systems Magazine - Q1 2021 - 41
IEEE Circuits and Systems Magazine - Q1 2021 - 42
IEEE Circuits and Systems Magazine - Q1 2021 - 43
IEEE Circuits and Systems Magazine - Q1 2021 - 44
IEEE Circuits and Systems Magazine - Q1 2021 - 45
IEEE Circuits and Systems Magazine - Q1 2021 - 46
IEEE Circuits and Systems Magazine - Q1 2021 - 47
IEEE Circuits and Systems Magazine - Q1 2021 - 48
IEEE Circuits and Systems Magazine - Q1 2021 - 49
IEEE Circuits and Systems Magazine - Q1 2021 - 50
IEEE Circuits and Systems Magazine - Q1 2021 - 51
IEEE Circuits and Systems Magazine - Q1 2021 - 52
IEEE Circuits and Systems Magazine - Q1 2021 - 53
IEEE Circuits and Systems Magazine - Q1 2021 - 54
IEEE Circuits and Systems Magazine - Q1 2021 - 55
IEEE Circuits and Systems Magazine - Q1 2021 - 56
IEEE Circuits and Systems Magazine - Q1 2021 - 57
IEEE Circuits and Systems Magazine - Q1 2021 - 58
IEEE Circuits and Systems Magazine - Q1 2021 - 59
IEEE Circuits and Systems Magazine - Q1 2021 - 60
IEEE Circuits and Systems Magazine - Q1 2021 - 61
IEEE Circuits and Systems Magazine - Q1 2021 - 62
IEEE Circuits and Systems Magazine - Q1 2021 - 63
IEEE Circuits and Systems Magazine - Q1 2021 - 64
IEEE Circuits and Systems Magazine - Q1 2021 - 65
IEEE Circuits and Systems Magazine - Q1 2021 - 66
IEEE Circuits and Systems Magazine - Q1 2021 - 67
IEEE Circuits and Systems Magazine - Q1 2021 - 68
IEEE Circuits and Systems Magazine - Q1 2021 - 69
IEEE Circuits and Systems Magazine - Q1 2021 - 70
IEEE Circuits and Systems Magazine - Q1 2021 - 71
IEEE Circuits and Systems Magazine - Q1 2021 - 72
IEEE Circuits and Systems Magazine - Q1 2021 - 73
IEEE Circuits and Systems Magazine - Q1 2021 - 74
IEEE Circuits and Systems Magazine - Q1 2021 - 75
IEEE Circuits and Systems Magazine - Q1 2021 - 76
IEEE Circuits and Systems Magazine - Q1 2021 - 77
IEEE Circuits and Systems Magazine - Q1 2021 - 78
IEEE Circuits and Systems Magazine - Q1 2021 - 79
IEEE Circuits and Systems Magazine - Q1 2021 - 80
IEEE Circuits and Systems Magazine - Q1 2021 - 81
IEEE Circuits and Systems Magazine - Q1 2021 - 82
IEEE Circuits and Systems Magazine - Q1 2021 - 83
IEEE Circuits and Systems Magazine - Q1 2021 - 84
IEEE Circuits and Systems Magazine - Q1 2021 - 85
IEEE Circuits and Systems Magazine - Q1 2021 - 86
IEEE Circuits and Systems Magazine - Q1 2021 - 87
IEEE Circuits and Systems Magazine - Q1 2021 - 88
IEEE Circuits and Systems Magazine - Q1 2021 - Cover3
IEEE Circuits and Systems Magazine - Q1 2021 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q1
https://www.nxtbookmedia.com