IEEE Circuits and Systems Magazine - Q1 2021 - 74

movement cancellation in Doppler vital sign detection, " IEEE Trans.
Microw. Theory Techn., vol. 61, no. 12, pp. 4678-4688, 2013. doi: 10.1109/
TMTT.2013.2288226.
[68] Y. Quan, Y. Li, X. Gao, and M. Xing, " FPGA implementation of realtime compressive sensing with partial Fourier dictionary, " Int. J. Antennas Propag., vol. 2016, 2016. doi: 10.1155/2016/1671687.
[69] A. Jarrah and M. M. Jamali, " Reconfigurable FPGA/GPU-based architecture of block compressive sampling matching pursuit algorithm, "
J. Circuits, Syst. Comput., vol. 24, no. 4, pp. 1-23, 2015. doi: 10.1142/
S0218126615500553.
[70] Q. Liang et al., " Research on non-contact monitoring system for
human physiological signal and body movement, " Biosensors, vol. 9, no.
2, 2019. doi: 10.3390/bios9020058.
[71] B. Erol, " Radar-based human activity recognition algorithms using
machine learning and deep neural networks, " Master thesis, Villanova
Univ., Pennsylvania, 2018.
[72] R. Rasu, P. S. Sundaram, and N. Santhiyakumari, " FPGA based noninvasive heart rate monitoring system for detecting abnormalities in
Fetal, " in Proc. Int. Conf. Signal Process. Commun. Eng. Syst., 2015, pp.
375-379. doi: 10.1109/SPACES.2015.7058287.
[73] N. S. Risman, S. N. Yassin, N. A. Nayan, S. C. Wei, and Y. W. Hau,
" Implementation of heart rate variability analysis algorithm on FPGA
platform, " Int. J. Appl. Eng. Res., vol. 11, no. 12, pp. 7809-7814, 2016.
[74] J. Kamble, I. A. Pasha, and M. Madhavilatha, " FPGA implementation
of digital modulation technique for HRR target detection, " Indian J. Sci.
Technol., vol. 8, no. 24, 2015. doi: 10.17485/ijst/2015/v8i24/80875.
[75] H. Suarez and Y. R. Zhang, " System-on-chip architecture and
validation for real-time transceiver optimization: APC implementation on FPGA, " in Proc. SPIE Int. Soc. Opt. Eng., 2015, vol. 9461. doi:
10.1117/12.2176839.
[76] C. A. Parmar, B. Ramanadham, and A. D. Darji, " FPGA implementation of hardware efficient adaptive filter robust to impulsive noise, "
IET Comput. Digit. Tech., vol. 11, no. 3, pp. 107-116, 2017. doi: 10.1049/
iet-cdt.2016.0067.
[77] S. Srinivasa Rao and P. Siddaiah, " Design and implementation of fourphase sequences on FPGA using modified particle swarm optimization for
radar applications, " Int. J. Appl. Eng. Res., vol. 12, no. 11, pp. 2907-2915, 2017.
[78] J. Zhang, R. Zhang, and Y. Dai, " Design and FPGA implementation of
DDS based on waveform compression and Taylor series, " in Proc. 29th
Chin. Control Decis. Conf. (CCDC 2017), 2017, pp. 1301-1306.
[79] W. Andre and O. Couillard, " Design and implementation of a new architecture of a real-time reconfigurable digital modulator on FPGA, " Electron. Lett., vol. 54, no. 18, pp. 1094-1095, 2018. doi: 10.1049/el.2018.5160.
[80] V. Thakur, A. K. Verma, P. Jena, and G. S. Prasad, " Design and implementation of FPGA based digital pulse compression via fast convolution using FFT-OS method, " in Proc. Int. Conf. Microw., Opt. Commun.
Eng., 2016, pp. 455-458. doi: 10.1109/ICMOCE.2015.7489791.
[81] N. Pallavi, P. Anjaneyulu, P. B. Reddy, V. Mahendra, and R. Karthik,
" Design and implementation of linear frequency modulated waveform
using DDS and FPGA, " in Proc. Int. Conf. Electron., Commun. Aerosp.
Technol., 2017, vol. 2017-Janua, pp. 237-241.
[82] M. R. Bales and S. C. Sutphin, " FPGA architecture for real-time
wideband waveform synthesis, " in IEEE National Radar Conf. Proc.,
2015, vol. 2015-June, pp. 605-610.
[83] N. ul Azim and W. Jun, " FPGA based hardware optimized implementation of signal processing system for LFM pulsed radar, " in Proc. Infrared, Millimeter-Wave, Terahertz Technol. IV, vol. 10,030, p. 100302U, 2016.
[84] J. Mangala and J. Manikandan, " FPGA implementation of reconfigurable modulation system, " in Proc. Int. Conf. Adv. Comput., Commun. Inform., 2015, pp. 493-500. doi: 10.1109/ICACCI.2015.7275657.
[85] P. J. Soh, G. A. E. Vandenbosch, M. Mercuri, and D. M. M. P. Schreurs, " Wearable wireless health monitoring, " IEEE Microw. Mag., vol.
16, no. 4, pp. 55-70, 2015. doi: 10.1109/MMM.2015.2394021.
[86] C. Chen et al., " TR-BREATH: Time-reversal breathing rate estimation and detection, " IEEE Trans. Biomed. Eng., vol. 65, no. 3, pp. 489-501,
2018. doi: 10.1109/TBME.2017.2699422.
[87] C. Li et al., " Overview of recent development on wireless sensing circuits and systems for healthcare and biomedical applications, "
IEEE J. Emerg. Sel. Top. Circuits Syst., vol. 8, no. 2, pp. 165-177, 2018. doi:
10.1109/JETCAS.2018.2822684.
[88] J. Liu, Y. Wang, Y. Chen, J. Yang, X. Chen, and J. Cheng, " Tracking vital signs during sleep leveraging off-the-shelf WiFi, " in Proc. Int.
Symp. Mob. Ad Hoc Netw. Comput., vol. 2015 -June, pp. 267-276, 2015.

74

IEEE CIRCUITS AND SYSTEMS MAGAZINE

[89] H. Abdelnasser, K. A. Harras, and M. Youssef, " UbiBreathe: A ubiquitous non-invasive WiFi-based breathing estimator, " in Proc. Int. Symp.
Mob. Ad Hoc Netw. Comput., vol. 2015-June, pp. 277-286, 2015.
[90] V. Lubecke, O. Boric-Lubecke, and E. Beck, " A compact low-cost
add-on module for Doppler radar sensing of vital signs using a wireless
communications terminal, " in Proc. IEEE MTT-S Int. Microw. Symp. Dig.,
2002, vol. 3, pp. 1767-1770. doi: 10.1109/MWSYM.2002.1012203.
[91] C. G. Bilich, " Bio-medical sensing using ultra wideband communications and radar technology: A feasibility study, " in Proc. 2006 Pervasive Heal. Conf. Work., 2006.
[92] B. Gupta, D. Valente, E. Cianca, and R. Prasad, " FM-UWB for radar
and communications in medical applications, " in Proc. 1st Int. Symp.
Appl. Sci. Biomed. Commun. Technol., 2008.
[93] M. Mercuri, P. Karsmakers, B. Vanrumste, P. Leroux, and D. Schreurs, " Biomedical wireless radar sensor network for indoor emergency situations detection and vital signs monitoring, " in Proc. IEEE Top.
Conf. Biomed. Wireless Technol. Netw., Sens. Syst., 2016, pp. 32-35.
[94] M. Mercuri et al., " Analysis of an indoor biomedical radar-based
system for health monitoring, " IEEE Trans. Microw. Theory Techn., vol.
61, no. 5, pp. 2061-2068, 2013. doi: 10.1109/TMTT.2013.2247619.
[95] C. Li, J. Cummings, J. Lam, E. Graves, and W. Wu, " Radar remote
monitoring of vital signs, " IEEE Microw. Mag., vol. 10, no. 1, pp. 47-56,
2009. doi: 10.1109/MMM.2008.930675.
[96] A. Munari, N. Grosheva, L. Simic´, and P. Mähönen, " Performance
of radar and communication networks coexisting in shared spectrum
bands, " in Proc. IEEE Int. Symp. Pers. Indoor Mob. Radio Commun. (PIMRC), 2019, pp. 1-8. doi: 10.1109/PIMRC.2019.8904309.
[97] D. Garmatyuk and J. Schuerger, " Conceptual design of a dual use
radar/communication system based on OFDM, " in Proc. IEEE Mil. Commun. Conf., 2008. doi: 10.1109/MILCOM.2008.4753063.
[98] Y. Zhu, Y. Zhu, B. Y. Zhao, and H. Zheng, " Reusing 60GHz radios
for mobile radar imaging, " in Proc. Annu. Int. Conf. Mob. Comput. Netw.,
(MOBICOM), 2015, vol. 2015-Septe, pp. 103-116.
[99] M. Mercuri et al., " Dual-mode wireless sensor network for real-time
contactless in-door health monitoring, " in Proc. 2015 IEEE MTT-S
Int. Microw. Symp. (IMS 2015), pp. 8-11. doi: 10.1109/MWSYM.2015.
7166812.
[100] P. Kumari, J. Choi, N. Gonzalez-Prelcic, and R. W. Heath, " IEEE
802.11ad-Based radar: An approach to joint vehicular communicationradar system, " IEEE Trans. Veh. Technol., vol. 67, no. 4, pp. 3012-3027,
2018. doi: 10.1109/TVT.2017.2774762.
[101] F. Guidi, A. Guerra, and D. Dardari, " Personal mobile radars with millimeter-wave massive arrays for indoor mapping, " IEEE Trans. Mob. Comput., vol. 15, no. 6, pp. 1471-1484, 2016. doi: 10.1109/TMC.2015.2467373.
[102] A. Khawar, A. Abdel-Hadi, and T. C. Clancy, " Spectrum sharing
between S-band radar and LTE cellular system: A spatial approach, " in
Proc. IEEE Int. Symp. Dyn. Spectr. Access Netw., (DYSPAN 2014), 2014, pp.
7-14. doi: 10.1109/DySPAN.2014.6817773.
[103] M. Mehrnoush and S. Roy, " Coexistence of WLAN network with radar:
Detection and interference mitigation, " IEEE Trans. Cogn. Commun. Netw.,
vol. 3, no. 4, pp. 655-667, 2017. doi: 10.1109/TCCN.2017.2762663.
[104] N. M. Thamrin, M. A. Haron, and F. A. Ruslan, " A field programmable gate array implementation for biomedical System-on-Chip (SoC), "
in Proc. 2011 IEEE 7th Int. Colloq. Signal Process. Appl. (CSPA 2011), 2011.
doi: 10.1109/CSPA.2011.5759870.
[105] W. Hu, C. C. Lin, L. Y. Shyu, C. Yuan, and C. Li, " An implementation
of a real-time and parallel processing ECG features extraction algorithm
in a field programmable gate array (FPGA), " in Proc. Comput. Cardiology,
2011, pp. 38-41.
[106] K. Tuppurainen et al., " Respiration rate monitoring methods: A
review. " HAL, U.K., 2011, p. 48.
[107] B. S. Jensen, T. K. Johansen, and V. Krozer, " Microwave Instrument
for Human Vital Signs Detection and Monitoring, " Ph.D. dissertation,
Tech. Univ. of Denmark, Lyngby, 2012.
[108] K. Lakhotia, G. Caffarena, A. Gil, D. G. Marquez, A. Otero, and M. P.
Desai, " Low-power, low-latency Hermite polynomial characterization of
heartbeats using a field-programmable gate array, " in Proc. 4th Int. Conf.
Bioinf. Biomed. Eng., 2016, vol. 9656, pp. 266-276.
[109] M. Mercuri, G. Sacco, R. Hornung, P. Zhang, H. Visser, M. Hijdra,
Y.-H. Liu, T. Torfs " 2-D Localization, Angular Separation and Vital Signs
Monitoring Using a SISO FMCW Radar for Smart Long-term Health Monitoring Environments, " IEEE Internet Things J., early access. https://doi
.org/10.1109/JIOT.2021.3051580
FIRST QUARTER 2021


https://doi.org/10.1109/JIOT.2021.3051580 https://doi.org/10.1109/JIOT.2021.3051580

IEEE Circuits and Systems Magazine - Q1 2021

Table of Contents for the Digital Edition of IEEE Circuits and Systems Magazine - Q1 2021

Contents
IEEE Circuits and Systems Magazine - Q1 2021 - Cover1
IEEE Circuits and Systems Magazine - Q1 2021 - Cover2
IEEE Circuits and Systems Magazine - Q1 2021 - Contents
IEEE Circuits and Systems Magazine - Q1 2021 - 2
IEEE Circuits and Systems Magazine - Q1 2021 - 3
IEEE Circuits and Systems Magazine - Q1 2021 - 4
IEEE Circuits and Systems Magazine - Q1 2021 - 5
IEEE Circuits and Systems Magazine - Q1 2021 - 6
IEEE Circuits and Systems Magazine - Q1 2021 - 7
IEEE Circuits and Systems Magazine - Q1 2021 - 8
IEEE Circuits and Systems Magazine - Q1 2021 - 9
IEEE Circuits and Systems Magazine - Q1 2021 - 10
IEEE Circuits and Systems Magazine - Q1 2021 - 11
IEEE Circuits and Systems Magazine - Q1 2021 - 12
IEEE Circuits and Systems Magazine - Q1 2021 - 13
IEEE Circuits and Systems Magazine - Q1 2021 - 14
IEEE Circuits and Systems Magazine - Q1 2021 - 15
IEEE Circuits and Systems Magazine - Q1 2021 - 16
IEEE Circuits and Systems Magazine - Q1 2021 - 17
IEEE Circuits and Systems Magazine - Q1 2021 - 18
IEEE Circuits and Systems Magazine - Q1 2021 - 19
IEEE Circuits and Systems Magazine - Q1 2021 - 20
IEEE Circuits and Systems Magazine - Q1 2021 - 21
IEEE Circuits and Systems Magazine - Q1 2021 - 22
IEEE Circuits and Systems Magazine - Q1 2021 - 23
IEEE Circuits and Systems Magazine - Q1 2021 - 24
IEEE Circuits and Systems Magazine - Q1 2021 - 25
IEEE Circuits and Systems Magazine - Q1 2021 - 26
IEEE Circuits and Systems Magazine - Q1 2021 - 27
IEEE Circuits and Systems Magazine - Q1 2021 - 28
IEEE Circuits and Systems Magazine - Q1 2021 - 29
IEEE Circuits and Systems Magazine - Q1 2021 - 30
IEEE Circuits and Systems Magazine - Q1 2021 - 31
IEEE Circuits and Systems Magazine - Q1 2021 - 32
IEEE Circuits and Systems Magazine - Q1 2021 - 33
IEEE Circuits and Systems Magazine - Q1 2021 - 34
IEEE Circuits and Systems Magazine - Q1 2021 - 35
IEEE Circuits and Systems Magazine - Q1 2021 - 36
IEEE Circuits and Systems Magazine - Q1 2021 - 37
IEEE Circuits and Systems Magazine - Q1 2021 - 38
IEEE Circuits and Systems Magazine - Q1 2021 - 39
IEEE Circuits and Systems Magazine - Q1 2021 - 40
IEEE Circuits and Systems Magazine - Q1 2021 - 41
IEEE Circuits and Systems Magazine - Q1 2021 - 42
IEEE Circuits and Systems Magazine - Q1 2021 - 43
IEEE Circuits and Systems Magazine - Q1 2021 - 44
IEEE Circuits and Systems Magazine - Q1 2021 - 45
IEEE Circuits and Systems Magazine - Q1 2021 - 46
IEEE Circuits and Systems Magazine - Q1 2021 - 47
IEEE Circuits and Systems Magazine - Q1 2021 - 48
IEEE Circuits and Systems Magazine - Q1 2021 - 49
IEEE Circuits and Systems Magazine - Q1 2021 - 50
IEEE Circuits and Systems Magazine - Q1 2021 - 51
IEEE Circuits and Systems Magazine - Q1 2021 - 52
IEEE Circuits and Systems Magazine - Q1 2021 - 53
IEEE Circuits and Systems Magazine - Q1 2021 - 54
IEEE Circuits and Systems Magazine - Q1 2021 - 55
IEEE Circuits and Systems Magazine - Q1 2021 - 56
IEEE Circuits and Systems Magazine - Q1 2021 - 57
IEEE Circuits and Systems Magazine - Q1 2021 - 58
IEEE Circuits and Systems Magazine - Q1 2021 - 59
IEEE Circuits and Systems Magazine - Q1 2021 - 60
IEEE Circuits and Systems Magazine - Q1 2021 - 61
IEEE Circuits and Systems Magazine - Q1 2021 - 62
IEEE Circuits and Systems Magazine - Q1 2021 - 63
IEEE Circuits and Systems Magazine - Q1 2021 - 64
IEEE Circuits and Systems Magazine - Q1 2021 - 65
IEEE Circuits and Systems Magazine - Q1 2021 - 66
IEEE Circuits and Systems Magazine - Q1 2021 - 67
IEEE Circuits and Systems Magazine - Q1 2021 - 68
IEEE Circuits and Systems Magazine - Q1 2021 - 69
IEEE Circuits and Systems Magazine - Q1 2021 - 70
IEEE Circuits and Systems Magazine - Q1 2021 - 71
IEEE Circuits and Systems Magazine - Q1 2021 - 72
IEEE Circuits and Systems Magazine - Q1 2021 - 73
IEEE Circuits and Systems Magazine - Q1 2021 - 74
IEEE Circuits and Systems Magazine - Q1 2021 - 75
IEEE Circuits and Systems Magazine - Q1 2021 - 76
IEEE Circuits and Systems Magazine - Q1 2021 - 77
IEEE Circuits and Systems Magazine - Q1 2021 - 78
IEEE Circuits and Systems Magazine - Q1 2021 - 79
IEEE Circuits and Systems Magazine - Q1 2021 - 80
IEEE Circuits and Systems Magazine - Q1 2021 - 81
IEEE Circuits and Systems Magazine - Q1 2021 - 82
IEEE Circuits and Systems Magazine - Q1 2021 - 83
IEEE Circuits and Systems Magazine - Q1 2021 - 84
IEEE Circuits and Systems Magazine - Q1 2021 - 85
IEEE Circuits and Systems Magazine - Q1 2021 - 86
IEEE Circuits and Systems Magazine - Q1 2021 - 87
IEEE Circuits and Systems Magazine - Q1 2021 - 88
IEEE Circuits and Systems Magazine - Q1 2021 - Cover3
IEEE Circuits and Systems Magazine - Q1 2021 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q1
https://www.nxtbookmedia.com