IEEE Circuits and Systems Magazine - Q2 2021 - 1

Circuits
and Systems
IEEE
MAGAZINE
Volume 21, Number 2
Second Quarter 2021
Features
4 FPGA Architecture: Principles and Progression
Andrew Boutros and Vaughn Betz
Since their inception more than thirty years ago, field-programmable gate arrays (FPGAs) have
been widely used to implement a myriad of applications from different domains. As a result of their
low-level hardware reconfigurability, FPGAs have much faster design cycles and lower development
costs compared to custom-designed chips. The design of an FPGA architecture involves many
different design choices starting from the high-level architectural parameters down to the transistorlevel
implementation details, with the goal of making a highly programmable device while minimizing
the area and performance cost of reconfigurability. As the needs of applications and the capabilities
of process technology are constantly evolving, FPGA architecture must also adapt. In this article, we
review the evolution of the different key components of modern commercial FPGA architectures and
shed the light on their main design principles and implementation challenges.
30 FPGA Acceleration for Big Data Analytics:
Challenges and Opportunities
Joost Hoozemans, Johan Peltenburg, Fabian Nonnenmacher,
©SHUTTERSTOCK.COM/EVGENIY JAMART
Ákos Hadnagy, Zaid Al-Ars, and H. Peter Hofstee
The big data revolution has ushered an era with ever increasing volumes and complexity of data
requiring ever faster computational analysis. During this very same era, CPU performance growth
has been stagnating, pushing the industry to either scale their computation horizontally using multiple
nodes in datacenters, or to scale vertically using heterogeneous components to reduce compute
time. However, networking and storage continue to provide both higher throughput and lower
latency, which allows for leveraging heterogeneous components, deployed in data centers around
the world. Still, the integration of big data analytics frameworks with heterogeneous hardware
components such as GPGPUs and FPGAs is challenging, because there is an increasing gap in
the level of abstraction between analytics solutions developed with big data analytics frameworks,
and accelerated kernels developed with heterogeneous components. In this article, we focus on
FPGA accelerators that have seen wide-scale deployment in large cloud infrastructures. FPGAs
allow the implementation of highly optimized hardware architectures, tailored exactly to an application,
and unburdened by the overhead associated with traditional general-purpose computer
architectures. FPGAs implementing dataflow-oriented architectures with high levels of (pipeline)
parallelism can provide high application throughput, often providing high energy efficiency. Latencysensitive
applications can leverage FPGA accelerators by directly connecting to the physical layer
of a network, and perform data transformations without going through the software stacks of the
host system. While these advantages of FPGA accelerators hold promise, difficulties associated
with programming and integration limit their use. This article explores the existing practices in big
data analytics frameworks, discusses the aforementioned gap in development abstractions, and
provides some perspectives on how to address these challenges in the future.
IEEE Circuits and Systems Magazine (ISSN 1531-636X)
(ICDMEN) is published quarterly by the Institute of Electrical
and Electronics Engineers, Inc. Headquarters: 3
Park Avenue, 17th Floor, New York, NY, 10016-5997 USA.
Responsibility for the contents rests upon the authors and
not upon the IEEE, the Society, or its members. IEEE Service
Center (for orders, subscriptions, address changes): 445
Hoes Lane, Piscataway, NJ 08854 USA. Telephone: +1 732
981 0060, +1 800 678 4333. Individual copies: IEEE members
US$20.00 (first copy only), nonmembers US$189 per copy;
US$7.00 per member per year (included in Society fee)
for each member of the IEEE Circuits and Systems Society.
Subscription rates available upon request. Copyright
and Reprint Permission: Abstracting is permitted with
credit to the source. Libraries are permitted to photocopy
beyond the limits of the U.S. Copyright law for private use
of patrons: 1) those post-1977 articles that carry a code
at the bottom of the first page, provided the per-copy fee
indicated in the code is paid through the Copyright Clearance
Center, 222 Rosewood Drive, Danvers, MA 01923; and
2) pre-1978 articles without fee. For other copying, reprint,
or republication permission, write to: Copyrights and
Permissions Department, IEEE Service Center, 445 Hoes
Lane, Piscataway, NJ 08854 USA. Copyright © 2021 by the
Institute of Electrical and Electronics Engineers, Inc. All
rights reserved. Periodicals postage paid at New York, NY,
and at additional mailing offices. Postmaster: Send address
changes to IEEE Circuits and Systems Magazine, IEEE Operations
Center, 445 Hoes Lane, Piscataway, NJ, 08854 USA.
Printed in U.S.A.
48 A Survey of FPGA-Based Robotic Computing
Zishen Wan,* Bo Yu,* Thomas Yuang Li, Jie Tang, Yuhao Zhu,
Yu Wang, Arijit Raychowdhury, and Shaoshan Liu
Recent researches on robotics have shown significant improvement, spanning from algorithms,
mechanics to hardware architectures. Robotics, including manipulators, legged robots, drones,
and autonomous vehicles, are now widely applied in diverse scenarios. However, the high computation
and data complexity of robotic algorithms pose great challenges to its applications. On
the one hand, CPU platform is flexible to handle multiple robotic tasks. GPU platform has higher
computational capacities and easy-to-use development frameworks, so they have been widely
adopted in several applications. On the other hand, FPGA-based robotic accelerators are becoming
increasingly competitive alternatives, especially in latency-critical and power-limited scenarios.
With specialized designed hardware logic and algorithm kernels, FPGA-based accelerators can
surpass CPU and GPU in performance and energy efficiency. In this paper, we give an overview
of previous work on FPGA-based robotic accelerators covering different stages of the robotic
system pipeline. An analysis of software and hardware optimization techniques and main technical
issues is presented, along with some commercial and space applications, to serve as a guide
for future work.
75 The Evolution of Domain-Specific
Digital Object Identifier 10.1109/MCAS.2021.3056246
SECOND QUARTER 2021
Computing for Deep Learning
Stephen Neuendorffer, Alireza Khodamoradi, Kristof Denolf,
Abhishek Kumar Jain, and Samuel Bayliss
With the continued slowing of Moore's law and Dennard scaling, it has become more imperative
that hardware designers make the best use of domain-specific information to improve designs.
Gone are the days when we could rely primarily on silicon process technology improvements to
IEEE CIRCUITS AND SYSTEMS MAGAZINE
1
http://www.SHUTTERSTOCK.COM/EVGENIY

IEEE Circuits and Systems Magazine - Q2 2021

Table of Contents for the Digital Edition of IEEE Circuits and Systems Magazine - Q2 2021

Contents
IEEE Circuits and Systems Magazine - Q2 2021 - Cover1
IEEE Circuits and Systems Magazine - Q2 2021 - Cover2
IEEE Circuits and Systems Magazine - Q2 2021 - Contents
IEEE Circuits and Systems Magazine - Q2 2021 - 2
IEEE Circuits and Systems Magazine - Q2 2021 - 3
IEEE Circuits and Systems Magazine - Q2 2021 - 4
IEEE Circuits and Systems Magazine - Q2 2021 - 5
IEEE Circuits and Systems Magazine - Q2 2021 - 6
IEEE Circuits and Systems Magazine - Q2 2021 - 7
IEEE Circuits and Systems Magazine - Q2 2021 - 8
IEEE Circuits and Systems Magazine - Q2 2021 - 9
IEEE Circuits and Systems Magazine - Q2 2021 - 10
IEEE Circuits and Systems Magazine - Q2 2021 - 11
IEEE Circuits and Systems Magazine - Q2 2021 - 12
IEEE Circuits and Systems Magazine - Q2 2021 - 13
IEEE Circuits and Systems Magazine - Q2 2021 - 14
IEEE Circuits and Systems Magazine - Q2 2021 - 15
IEEE Circuits and Systems Magazine - Q2 2021 - 16
IEEE Circuits and Systems Magazine - Q2 2021 - 17
IEEE Circuits and Systems Magazine - Q2 2021 - 18
IEEE Circuits and Systems Magazine - Q2 2021 - 19
IEEE Circuits and Systems Magazine - Q2 2021 - 20
IEEE Circuits and Systems Magazine - Q2 2021 - 21
IEEE Circuits and Systems Magazine - Q2 2021 - 22
IEEE Circuits and Systems Magazine - Q2 2021 - 23
IEEE Circuits and Systems Magazine - Q2 2021 - 24
IEEE Circuits and Systems Magazine - Q2 2021 - 25
IEEE Circuits and Systems Magazine - Q2 2021 - 26
IEEE Circuits and Systems Magazine - Q2 2021 - 27
IEEE Circuits and Systems Magazine - Q2 2021 - 28
IEEE Circuits and Systems Magazine - Q2 2021 - 29
IEEE Circuits and Systems Magazine - Q2 2021 - 30
IEEE Circuits and Systems Magazine - Q2 2021 - 31
IEEE Circuits and Systems Magazine - Q2 2021 - 32
IEEE Circuits and Systems Magazine - Q2 2021 - 33
IEEE Circuits and Systems Magazine - Q2 2021 - 34
IEEE Circuits and Systems Magazine - Q2 2021 - 35
IEEE Circuits and Systems Magazine - Q2 2021 - 36
IEEE Circuits and Systems Magazine - Q2 2021 - 37
IEEE Circuits and Systems Magazine - Q2 2021 - 38
IEEE Circuits and Systems Magazine - Q2 2021 - 39
IEEE Circuits and Systems Magazine - Q2 2021 - 40
IEEE Circuits and Systems Magazine - Q2 2021 - 41
IEEE Circuits and Systems Magazine - Q2 2021 - 42
IEEE Circuits and Systems Magazine - Q2 2021 - 43
IEEE Circuits and Systems Magazine - Q2 2021 - 44
IEEE Circuits and Systems Magazine - Q2 2021 - 45
IEEE Circuits and Systems Magazine - Q2 2021 - 46
IEEE Circuits and Systems Magazine - Q2 2021 - 47
IEEE Circuits and Systems Magazine - Q2 2021 - 48
IEEE Circuits and Systems Magazine - Q2 2021 - 49
IEEE Circuits and Systems Magazine - Q2 2021 - 50
IEEE Circuits and Systems Magazine - Q2 2021 - 51
IEEE Circuits and Systems Magazine - Q2 2021 - 52
IEEE Circuits and Systems Magazine - Q2 2021 - 53
IEEE Circuits and Systems Magazine - Q2 2021 - 54
IEEE Circuits and Systems Magazine - Q2 2021 - 55
IEEE Circuits and Systems Magazine - Q2 2021 - 56
IEEE Circuits and Systems Magazine - Q2 2021 - 57
IEEE Circuits and Systems Magazine - Q2 2021 - 58
IEEE Circuits and Systems Magazine - Q2 2021 - 59
IEEE Circuits and Systems Magazine - Q2 2021 - 60
IEEE Circuits and Systems Magazine - Q2 2021 - 61
IEEE Circuits and Systems Magazine - Q2 2021 - 62
IEEE Circuits and Systems Magazine - Q2 2021 - 63
IEEE Circuits and Systems Magazine - Q2 2021 - 64
IEEE Circuits and Systems Magazine - Q2 2021 - 65
IEEE Circuits and Systems Magazine - Q2 2021 - 66
IEEE Circuits and Systems Magazine - Q2 2021 - 67
IEEE Circuits and Systems Magazine - Q2 2021 - 68
IEEE Circuits and Systems Magazine - Q2 2021 - 69
IEEE Circuits and Systems Magazine - Q2 2021 - 70
IEEE Circuits and Systems Magazine - Q2 2021 - 71
IEEE Circuits and Systems Magazine - Q2 2021 - 72
IEEE Circuits and Systems Magazine - Q2 2021 - 73
IEEE Circuits and Systems Magazine - Q2 2021 - 74
IEEE Circuits and Systems Magazine - Q2 2021 - 75
IEEE Circuits and Systems Magazine - Q2 2021 - 76
IEEE Circuits and Systems Magazine - Q2 2021 - 77
IEEE Circuits and Systems Magazine - Q2 2021 - 78
IEEE Circuits and Systems Magazine - Q2 2021 - 79
IEEE Circuits and Systems Magazine - Q2 2021 - 80
IEEE Circuits and Systems Magazine - Q2 2021 - 81
IEEE Circuits and Systems Magazine - Q2 2021 - 82
IEEE Circuits and Systems Magazine - Q2 2021 - 83
IEEE Circuits and Systems Magazine - Q2 2021 - 84
IEEE Circuits and Systems Magazine - Q2 2021 - 85
IEEE Circuits and Systems Magazine - Q2 2021 - 86
IEEE Circuits and Systems Magazine - Q2 2021 - 87
IEEE Circuits and Systems Magazine - Q2 2021 - 88
IEEE Circuits and Systems Magazine - Q2 2021 - 89
IEEE Circuits and Systems Magazine - Q2 2021 - 90
IEEE Circuits and Systems Magazine - Q2 2021 - 91
IEEE Circuits and Systems Magazine - Q2 2021 - 92
IEEE Circuits and Systems Magazine - Q2 2021 - 93
IEEE Circuits and Systems Magazine - Q2 2021 - 94
IEEE Circuits and Systems Magazine - Q2 2021 - 95
IEEE Circuits and Systems Magazine - Q2 2021 - 96
IEEE Circuits and Systems Magazine - Q2 2021 - 97
IEEE Circuits and Systems Magazine - Q2 2021 - 98
IEEE Circuits and Systems Magazine - Q2 2021 - 99
IEEE Circuits and Systems Magazine - Q2 2021 - 100
IEEE Circuits and Systems Magazine - Q2 2021 - 101
IEEE Circuits and Systems Magazine - Q2 2021 - 102
IEEE Circuits and Systems Magazine - Q2 2021 - 103
IEEE Circuits and Systems Magazine - Q2 2021 - 104
IEEE Circuits and Systems Magazine - Q2 2021 - 105
IEEE Circuits and Systems Magazine - Q2 2021 - 106
IEEE Circuits and Systems Magazine - Q2 2021 - 107
IEEE Circuits and Systems Magazine - Q2 2021 - 108
IEEE Circuits and Systems Magazine - Q2 2021 - 109
IEEE Circuits and Systems Magazine - Q2 2021 - 110
IEEE Circuits and Systems Magazine - Q2 2021 - 111
IEEE Circuits and Systems Magazine - Q2 2021 - 112
IEEE Circuits and Systems Magazine - Q2 2021 - 113
IEEE Circuits and Systems Magazine - Q2 2021 - 114
IEEE Circuits and Systems Magazine - Q2 2021 - 115
IEEE Circuits and Systems Magazine - Q2 2021 - 116
IEEE Circuits and Systems Magazine - Q2 2021 - 117
IEEE Circuits and Systems Magazine - Q2 2021 - 118
IEEE Circuits and Systems Magazine - Q2 2021 - 119
IEEE Circuits and Systems Magazine - Q2 2021 - 120
IEEE Circuits and Systems Magazine - Q2 2021 - 121
IEEE Circuits and Systems Magazine - Q2 2021 - 122
IEEE Circuits and Systems Magazine - Q2 2021 - 123
IEEE Circuits and Systems Magazine - Q2 2021 - 124
IEEE Circuits and Systems Magazine - Q2 2021 - 125
IEEE Circuits and Systems Magazine - Q2 2021 - 126
IEEE Circuits and Systems Magazine - Q2 2021 - 127
IEEE Circuits and Systems Magazine - Q2 2021 - 128
IEEE Circuits and Systems Magazine - Q2 2021 - Cover3
IEEE Circuits and Systems Magazine - Q2 2021 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q1
https://www.nxtbookmedia.com