IEEE Circuits and Systems Magazine - Q2 2021 - 28
References
[1] M. Hall and V. Betz, " HPIPE: Heterogeneous layer-pipelined and sparseaware
CNN inference for FPGAs, " 2020, arXiv:2007.10451.
[2] P. Yiannacouras et al., " Data parallel FPGA workloads: Software versus
hardware, " in Proc. IEEE Int. Conf. Field-Programmable Logic Appl. (FPL),
2009, pp. 51-58.
[3] M. Cummings and S. Haruyama, " FPGA in the software radio, " IEEE
Commun. Mag., vol. 37, no. 2, pp. 108-112, 1999. doi: 10.1109/35.747258.
[4] J. Rettkowski et al., " HW/SW co-design of the HOG algorithm on a
Xilinx Zynq SoC, " J. Parallel Distrib. Comput., vol. 109, pp. 50-62, 2017. doi:
10.1016/j.jpdc.2017.05.005.
[5] A. Bitar et al., " Bringing programmability to the data plane: Packet
processing with a NoC-enhanced FPGA, " in Proc. IEEE Int. Conf. Field-Programmable
Technol. (FPT), 2015, pp. 24-31.
[6] H. Krupnova and G. Saucier, " FPGA-based Emulation: Industrial and
Custom Prototyping Solutions, " in Proc. Int. Workshop on Field-Programmable
Logic Appl. (FPL), Springer-Verlag, 2000, pp. 68-77.
[7] A. Boutros et al., " Build fast, trade fast: FPGA-based high-frequency
trading using high-level synthesis, " in Proc. IEEE Int. Conf. Reconfigurable
Comput. FPGAs (ReConFig), 2017, pp. 1-6.
[8] A. Putnam et al., " A reconfigurable fabric for accelerating large-scale
datacenter services, " in Proc. ACM/IEEE Int. Symp. Comput. Architecture
(ISCA), 2014, pp. 13-24.
[9] A. M. Caulfield et al., " A cloud-scale acceleration architecture, " in Proc.
IEEE/ACM Int. Symp. Microarchitecture (MICRO), 2016, pp. 1-13.
[10] J. Fowers et al., " A configurable cloud-scale DNN processor for realtime
AI, " in Proc. ACM/IEEE Int. Symp. Comput. Architecture (ISCA), 2018,
pp. 1-14.
[11] I. Kuon and J. Rose, " Measuring the gap between FPGAs and ASICs, "
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 26, no. 2, pp.
203-215, 2007. doi: 10.1109/TCAD.2006.884574.
[12] A. Boutros et al., " You cannot improve what you do not measure:
FPGA vs. ASIC efficiency gaps for convolutional neural network inference, "
ACM Trans. Reconfigurable Technol. Syst. (TRETS), vol. 11, no. 3, pp.
1-23, 2018. doi: 10.1145/3242898.
[13] S. Yang, Logic Synthesis and Optimization Benchmarks User Guide: Version
3.0. Microelectronics Center of North Carolina, 1991.
[14] K. Murray et al., " VTR 8: High-performance CAD and customizable
FPGA architecture modelling, " ACM Trans. Reconfigurable Technol. Syst.
(TRETS), vol. 13, no. 2, pp. 1-55, June 2020. doi: 10.1145/3388617.
[15] K. Murray et al., " Titan: enabling large and complex benchmarks in
academic CAD, " in Proc. IEEE Int. Conf. Field-Programmable Logic Appl.
(FPL), 2013, pp. 1-8.
[16] H. Parandeh-Afshar et al., " Rethinking FPGAs: Elude the flexibility
excess of LUTs with and-inverter cones, " in Proc. ACM/SIGDA Int. Symp.
Field-Programmable Gate Arrays (FPGA), 2012, pp. 119-128.
[17] H. Parandeh-Afshar et al., " Shadow AICs: Reaping the benefits of andinverter
cones with minimal architectural impact, " in Proc. ACM/SIGDA
Int. Symp. Field-Programmable Gate Arrays (FPGA), 2013, pp. 279-279.
[18] H. Parandeh-Afshar et al., " Shadow and-inverter cones, " in Proc. IEEE
Int. Conf. Field-Programmable Logic Appl. (FPL), 2013, pp. 1-4.
[19] G. Zgheib et al., " Revisiting and-inverter cones, " in Proc. ACM/SIGDA
Int. Symp. Field-Programmable Gate Arrays (FPGA), 2014, pp. 45-54. doi:
10.1145/2554688.2554791.
[20] V. Betz et al., Architecture and CAD for Deep-Submicron FPGAs. Springer
Science & Business Media, 1999.
[21] V. Betz and J. Rose, " How much logic should go in an FPGA logic
block? " IEEE Design Test Comput., vol. 15, no. 1, pp. 10-15, 1998. doi:
10.1109/54.655177.
[22] G. Lemieux et al., " Generating highly-routable sparse crossbars for
PLDs, " in Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays
(FPGA), 2000, pp. 155-164. doi: 10.1145/329166.329199.
[23] C. Chiasson and V. Betz, " COFFE: Fully-automated transistor sizing
for FPGAs, " in Proc. IEEE Int. Conf. Field-Programmable Technol. (FPT),
2013, pp. 34-41.
[24] E. Ahmed and J. Rose, " The effect of LUT and cluster size on deepsubmicron
FPGA performance and density, " IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 12, no. 3, pp. 288-298, 2004. doi: 10.1109/
TVLSI.2004.824300.
[25] " Stratix II Device Handbook, Volume 1 (SII5V1-4.5). " Altera Corp., 2007.
[26] D. Lewis et al., " The Stratix II logic and routing architecture, " in Proc.
ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays (FPGA), 2005,
pp. 14-20.
28
IEEE CIRCUITS AND SYSTEMS MAGAZINE
[27] T. Ahmed et al., " Packing techniques for Virtex-5 FPGAs, " ACM Trans.
Reconfigurable Technol. Syst. (TRETS), vol. 2, no. 3, pp. 1-24, 2009. doi:
10.1145/1575774.1575777.
[28] W. Feng et al., " Improving FPGA performance with a S44 LUT structure, "
in Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays
(FPGA), 2018, pp. 61-66. doi: 10.1145/3174243.3174272.
[29] " Versal ACAP Configurable Logic Block Architecture Manual (AM005
v1.0), " Xilinx Inc, 2020.
[30] D. Lewis et al., " Architectural enhancements in Stratix V, " in Proc.
ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays (FPGA), 2013, pp.
147-156.
[31] I. Ganusov and B. Devlin, " Time-borrowing platform in the Xilinx Ultrascale+
family of FPGAs and MPSoCs, " in Proc. IEEE Int. Conf.Field Programmable
Logic Appl. (FPL), 2016, pp. 1-9.
[32] K. Murray et al., " Optimizing FPGA logic block architectures for arithmetic, "
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 28, no. 6, pp.
1378-1391, 2020. doi: 10.1109/TVLSI.2020.2965772.
[33] S. Yazdanshenas and V. Betz, " Automatic circuit design and modelling
for heterogeneous FPGAs, " in Proc. IEEE Int. Conf. Field Programmable
Technol. (ICFPT), 2017, pp. 9-16.
[34] J. Chromczak et al., " Architectural enhancements in Intel Agilex FPGAs, "
in Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays (FPGA), 2020,
pp. 140-149.
[35] S. Rasoulinezhad et al., " LUXOR: An FPGA logic cell architecture
for efficient compressor tree implementations, " in Proc. ACM/SIGDA Int.
Symp. Field-Programmable Gate Arrays (FPGA), 2020, pp. 161-171.
[36] A. Boutros et al., " Math doesn't have to be hard: Logic block architectures
to enhance low-precision multiply-accumulate on FPGAs, " in Proc.
ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays (FPGA), 2019, pp.
94-103.
[37] M. Eldafrawy et al., " FPGA logic block architectures for efficient deep
learning inference, " ACM Trans. Reconfigurable Technol. Syst. (TRETS),
vol. 13, no. 3, pp. 1-34, 2020. doi: 10.1145/3393668.
[38] C. Chiasson and V. Betz, " Should FPGAs abandon the pass gate? " in
Proc. Int. Conf. Field-Programmable Logic Appl., 2013, pp. 1-8.
[39] FlexLogix eFPGA. https://flex-logix.com/efpga/
[40] V. Betz and J. Rose, " FPGA routing architecture: Segmentation and
buffering to optimize speed and density, " in Proc. ACM Int. Symp. FPGAs,
1999, pp. 59-68.
[41] O. Petelin and V. Betz, " The speed of diversity: Exploring complex
FPGA routing toplogies for the global metal layer, " in Proc. IEEE Int. Conf.
Field-Programmable Logic Appl. (FPL), 2016, pp. 1-10.
[42] D. Lewis et al., " The Stratix routing and logic architecture, " in Proc. ACM/
SIGDA Int. Symp. Field-Programmable Gate Arrays (FPGA), 2003, pp. 12-20.
[43] X. Tang et al., " A study on switch block patterns for tileable FPGA
routing architectures, " in Proc. IEEE Int. Conf. Field-Programmable Technol.
(FPT), 2019, pp. 247-250.
[44] G. Lemieux et al., " Directional and single-driver wires in FPGA interconnect, "
in Proc. IEEE Int. Conf. Field-Programmable Technol. (FPT), 2004,
pp. 41-48.
[45] D. Lewis et al., " The Stratix 10 highly pipelined FPGA architecture, "
in Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays (FPGA),
2016, pp. 159-168.
[46] B. Gaide et al., " Xilinx adaptive compute acceleration platform: Versal
architecture, " in Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate
Arrays (FPGA), 2019, pp. 84-93. doi: 10.1145/3289602.3293906.
[47] J. Tyhach et al., " A 90 nm FPGA I/O buffer design with 1.6 Gbps data
rate for source-synchronous system and 300 MHz clock rate for external
memory interface, " in Proc. IEEE Custom Integrated Circuits Conf., 2004,
pp. 431-434.
[48] N. Zhang et al., " Low-voltage and high-speed FPGA I/O cell design in
90nm CMOS, " in Proc. IEEE Int. Conf. ASIC, 2009, pp. 533-536.
[49] T. Qian et al., " A 1.25Gbps programmable FPGA I/O buffer with multistandard
support, " in Proc. IEEE Int. Conf. Integr. Circuits Microsyst., 2018,
pp. 362-365.
[50] P. Upadhyaya et al., " A fully-adaptive wideband 0.5-32.75Gb/s FPGA
transceiver in 16nm FinFET CMOS technology, " in Proc. IIEEE Symp. VLSI
Circuits, 2016, pp. 1-2.
[51] " Implementing RAM functions in FLEX 10K Devices (A-AN-052-01), "
Altera Corp., 1995.
[52] K. Tatsumura et al., " High density, low energy, magnetic tunnel junction
based block RAMs for memory-rich FPGAs, " in Proc. IEEE Int. Conf.
Field-Programmable Technol. (FPT), 2016, pp. 4-11.
SECOND QUARTER 2021
https://www.flex-logix.com/efpga/
IEEE Circuits and Systems Magazine - Q2 2021
Table of Contents for the Digital Edition of IEEE Circuits and Systems Magazine - Q2 2021
Contents
IEEE Circuits and Systems Magazine - Q2 2021 - Cover1
IEEE Circuits and Systems Magazine - Q2 2021 - Cover2
IEEE Circuits and Systems Magazine - Q2 2021 - Contents
IEEE Circuits and Systems Magazine - Q2 2021 - 2
IEEE Circuits and Systems Magazine - Q2 2021 - 3
IEEE Circuits and Systems Magazine - Q2 2021 - 4
IEEE Circuits and Systems Magazine - Q2 2021 - 5
IEEE Circuits and Systems Magazine - Q2 2021 - 6
IEEE Circuits and Systems Magazine - Q2 2021 - 7
IEEE Circuits and Systems Magazine - Q2 2021 - 8
IEEE Circuits and Systems Magazine - Q2 2021 - 9
IEEE Circuits and Systems Magazine - Q2 2021 - 10
IEEE Circuits and Systems Magazine - Q2 2021 - 11
IEEE Circuits and Systems Magazine - Q2 2021 - 12
IEEE Circuits and Systems Magazine - Q2 2021 - 13
IEEE Circuits and Systems Magazine - Q2 2021 - 14
IEEE Circuits and Systems Magazine - Q2 2021 - 15
IEEE Circuits and Systems Magazine - Q2 2021 - 16
IEEE Circuits and Systems Magazine - Q2 2021 - 17
IEEE Circuits and Systems Magazine - Q2 2021 - 18
IEEE Circuits and Systems Magazine - Q2 2021 - 19
IEEE Circuits and Systems Magazine - Q2 2021 - 20
IEEE Circuits and Systems Magazine - Q2 2021 - 21
IEEE Circuits and Systems Magazine - Q2 2021 - 22
IEEE Circuits and Systems Magazine - Q2 2021 - 23
IEEE Circuits and Systems Magazine - Q2 2021 - 24
IEEE Circuits and Systems Magazine - Q2 2021 - 25
IEEE Circuits and Systems Magazine - Q2 2021 - 26
IEEE Circuits and Systems Magazine - Q2 2021 - 27
IEEE Circuits and Systems Magazine - Q2 2021 - 28
IEEE Circuits and Systems Magazine - Q2 2021 - 29
IEEE Circuits and Systems Magazine - Q2 2021 - 30
IEEE Circuits and Systems Magazine - Q2 2021 - 31
IEEE Circuits and Systems Magazine - Q2 2021 - 32
IEEE Circuits and Systems Magazine - Q2 2021 - 33
IEEE Circuits and Systems Magazine - Q2 2021 - 34
IEEE Circuits and Systems Magazine - Q2 2021 - 35
IEEE Circuits and Systems Magazine - Q2 2021 - 36
IEEE Circuits and Systems Magazine - Q2 2021 - 37
IEEE Circuits and Systems Magazine - Q2 2021 - 38
IEEE Circuits and Systems Magazine - Q2 2021 - 39
IEEE Circuits and Systems Magazine - Q2 2021 - 40
IEEE Circuits and Systems Magazine - Q2 2021 - 41
IEEE Circuits and Systems Magazine - Q2 2021 - 42
IEEE Circuits and Systems Magazine - Q2 2021 - 43
IEEE Circuits and Systems Magazine - Q2 2021 - 44
IEEE Circuits and Systems Magazine - Q2 2021 - 45
IEEE Circuits and Systems Magazine - Q2 2021 - 46
IEEE Circuits and Systems Magazine - Q2 2021 - 47
IEEE Circuits and Systems Magazine - Q2 2021 - 48
IEEE Circuits and Systems Magazine - Q2 2021 - 49
IEEE Circuits and Systems Magazine - Q2 2021 - 50
IEEE Circuits and Systems Magazine - Q2 2021 - 51
IEEE Circuits and Systems Magazine - Q2 2021 - 52
IEEE Circuits and Systems Magazine - Q2 2021 - 53
IEEE Circuits and Systems Magazine - Q2 2021 - 54
IEEE Circuits and Systems Magazine - Q2 2021 - 55
IEEE Circuits and Systems Magazine - Q2 2021 - 56
IEEE Circuits and Systems Magazine - Q2 2021 - 57
IEEE Circuits and Systems Magazine - Q2 2021 - 58
IEEE Circuits and Systems Magazine - Q2 2021 - 59
IEEE Circuits and Systems Magazine - Q2 2021 - 60
IEEE Circuits and Systems Magazine - Q2 2021 - 61
IEEE Circuits and Systems Magazine - Q2 2021 - 62
IEEE Circuits and Systems Magazine - Q2 2021 - 63
IEEE Circuits and Systems Magazine - Q2 2021 - 64
IEEE Circuits and Systems Magazine - Q2 2021 - 65
IEEE Circuits and Systems Magazine - Q2 2021 - 66
IEEE Circuits and Systems Magazine - Q2 2021 - 67
IEEE Circuits and Systems Magazine - Q2 2021 - 68
IEEE Circuits and Systems Magazine - Q2 2021 - 69
IEEE Circuits and Systems Magazine - Q2 2021 - 70
IEEE Circuits and Systems Magazine - Q2 2021 - 71
IEEE Circuits and Systems Magazine - Q2 2021 - 72
IEEE Circuits and Systems Magazine - Q2 2021 - 73
IEEE Circuits and Systems Magazine - Q2 2021 - 74
IEEE Circuits and Systems Magazine - Q2 2021 - 75
IEEE Circuits and Systems Magazine - Q2 2021 - 76
IEEE Circuits and Systems Magazine - Q2 2021 - 77
IEEE Circuits and Systems Magazine - Q2 2021 - 78
IEEE Circuits and Systems Magazine - Q2 2021 - 79
IEEE Circuits and Systems Magazine - Q2 2021 - 80
IEEE Circuits and Systems Magazine - Q2 2021 - 81
IEEE Circuits and Systems Magazine - Q2 2021 - 82
IEEE Circuits and Systems Magazine - Q2 2021 - 83
IEEE Circuits and Systems Magazine - Q2 2021 - 84
IEEE Circuits and Systems Magazine - Q2 2021 - 85
IEEE Circuits and Systems Magazine - Q2 2021 - 86
IEEE Circuits and Systems Magazine - Q2 2021 - 87
IEEE Circuits and Systems Magazine - Q2 2021 - 88
IEEE Circuits and Systems Magazine - Q2 2021 - 89
IEEE Circuits and Systems Magazine - Q2 2021 - 90
IEEE Circuits and Systems Magazine - Q2 2021 - 91
IEEE Circuits and Systems Magazine - Q2 2021 - 92
IEEE Circuits and Systems Magazine - Q2 2021 - 93
IEEE Circuits and Systems Magazine - Q2 2021 - 94
IEEE Circuits and Systems Magazine - Q2 2021 - 95
IEEE Circuits and Systems Magazine - Q2 2021 - 96
IEEE Circuits and Systems Magazine - Q2 2021 - 97
IEEE Circuits and Systems Magazine - Q2 2021 - 98
IEEE Circuits and Systems Magazine - Q2 2021 - 99
IEEE Circuits and Systems Magazine - Q2 2021 - 100
IEEE Circuits and Systems Magazine - Q2 2021 - 101
IEEE Circuits and Systems Magazine - Q2 2021 - 102
IEEE Circuits and Systems Magazine - Q2 2021 - 103
IEEE Circuits and Systems Magazine - Q2 2021 - 104
IEEE Circuits and Systems Magazine - Q2 2021 - 105
IEEE Circuits and Systems Magazine - Q2 2021 - 106
IEEE Circuits and Systems Magazine - Q2 2021 - 107
IEEE Circuits and Systems Magazine - Q2 2021 - 108
IEEE Circuits and Systems Magazine - Q2 2021 - 109
IEEE Circuits and Systems Magazine - Q2 2021 - 110
IEEE Circuits and Systems Magazine - Q2 2021 - 111
IEEE Circuits and Systems Magazine - Q2 2021 - 112
IEEE Circuits and Systems Magazine - Q2 2021 - 113
IEEE Circuits and Systems Magazine - Q2 2021 - 114
IEEE Circuits and Systems Magazine - Q2 2021 - 115
IEEE Circuits and Systems Magazine - Q2 2021 - 116
IEEE Circuits and Systems Magazine - Q2 2021 - 117
IEEE Circuits and Systems Magazine - Q2 2021 - 118
IEEE Circuits and Systems Magazine - Q2 2021 - 119
IEEE Circuits and Systems Magazine - Q2 2021 - 120
IEEE Circuits and Systems Magazine - Q2 2021 - 121
IEEE Circuits and Systems Magazine - Q2 2021 - 122
IEEE Circuits and Systems Magazine - Q2 2021 - 123
IEEE Circuits and Systems Magazine - Q2 2021 - 124
IEEE Circuits and Systems Magazine - Q2 2021 - 125
IEEE Circuits and Systems Magazine - Q2 2021 - 126
IEEE Circuits and Systems Magazine - Q2 2021 - 127
IEEE Circuits and Systems Magazine - Q2 2021 - 128
IEEE Circuits and Systems Magazine - Q2 2021 - Cover3
IEEE Circuits and Systems Magazine - Q2 2021 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q1
https://www.nxtbookmedia.com