IEEE Circuits and Systems Magazine - Q2 2021 - 73

[106] T. Bailey, J. Nieto, J. Guivant, M. Stevens, and E. Nebot, " Consistency
of the EKF-SLAM algorithm, " in Proc. IEEE/RSJ Int. Conf. Intell.
Robots and Syst., 2006, pp. 3562-3568.
[107] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, " ORB-SLAM: A
versatile and accurate monocular slam system, " IEEE Trans. Robot., vol.
31, no. 5, pp. 1147-1163, 2015. doi: 10.1109/TRO.2015.2463671.
[108] M. Montemerlo et al., " FastSLAM: A factored solution to the simultaneous
localization and mapping problem, " AAAI/IAAI, vol. 593598, 2002.
[109] M. Gu, K. Guo, W. Wang, Y. Wang, and H. Yang, " An FPGA-based
real-time simultaneous localization and mapping system, " in Proc.
Int. Conf. Field Programmable Technol. (FPT), 2015, pp. 200-203. doi:
10.1109/FPT.2015.7393150.
[110] C. Cadena et al., " Past, present, and future of simultaneous localization
and mapping: Toward the robust-perception age, " IEEE Trans.
Robot., vol. 32, no. 6, pp. 1309-1332, 2016. doi: 10.1109/TRO.2016.2624754.
[111] J. Engel, J. Sturm, and D. Cremers, " Semi-dense visual odometry for a
monocular camera, " in Proc. IEEE Int. Conf. Comput. Vision, 2013, pp. 1449-1456.
[112] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, " Vision meets robotics:
The KITTI dataset, " Int. J. Robot. Res., vol. 32, no. 11, pp. 1231-1237,
2013. doi: 10.1177/0278364913491297.
[113] M. Burri et al., " The EuRoC micro aerial vehicle datasets, " Int. J. Robot.
Res., vol. 35, no. 10, pp. 1157-1163, 2016. doi: 10.1177/0278364915620033.
[114] R. A. Newcombe et al., " KinectFusion: Real-time dense surface
mapping and tracking, " in Proc. 10th IEEE Int. Symp. Mixed and Augmented
Reality, 2011, pp. 127-136.
[115] V. Bonato, E. Marques, and G. A. Constantinides, " A floating-point extended
Kalman filter implementation for autonomous mobile robots, " J. Signal
Process. Syst., vol. 56, no. 1, pp. 41-50, 2009. doi: 10.1007/s11265-008-0257-8.
[116] D. T. Tertei, J. Piat, and M. Devy, " FPGA design and implementation
of a matrix multiplier based accelerator for 3d EKF SLAM, " in Proc. Int.
Conf. ReConFigurable Comput. and FPGAs (ReConFig14), 2014, pp. 1-6.
[117] D. T. Tertei, J. Piat, and M. Devy, " FPGA design of EKF block accelerator
for 3d visual slam, " Comput. Electr. Eng., vol. 55, pp. 123-137, 2016.
doi: 10.1016/j.compeleceng.2016.05.003.
[118] B. Vincke, A. Elouardi, and A. Lambert, " Real time simultaneous
localization and mapping: towards low-cost multiprocessor embedded
systems, " EURASIP J. Embedded Syst., vol. 2012, no. 1, p. 5, 2012. doi:
10.1186/1687-3963-2012-5.
[119] B. Vincke, A. Elouardi, A. Lambert, and A. Dine, " SIMD and
OpenMP optimization of EKF-SLAM, " in Proc. Int. Conf. Multimedia Computi.
Syst. (ICMCS), 2014, pp. 712-716. doi: 10.1109/ICMCS.2014.6911157.
[120] W. Fang, Y. Zhang, B. Yu, and S. Liu, " FPGA-based ORB feature extraction
for real-time visual slam, " in Proc. Int. Conf. Field Programmable
Technol. (ICFPT), 2017, pp. 275-278. doi: 10.1109/FPT.2017.8280159.
[121] Y. Biadgie and K.-A. Sohn, " Feature detector using adaptive accelerated
segment test, " in Proc. Int. Conf. Inf. Sci. Appl. (ICISA), 2014, pp. 1-4.
[122] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, " Brief: Binary robust
independent elementary features, " in Proc. European Conf. Comput.
Vision, 2010, pp. 778-792.
[123] R. Liu, J. Yang, Y. Chen, and W. Zhao, " eSLAM: An energy-efficient
accelerator for real-time ORB-slam on FPGA platform, " in Proc. 56th
Annu. Des. Automat. Conf., 2019, pp. 1-6.
[124] V. H. Schulz, F. G. Bombardelli, and E. Todt, " A Harris corner detector
implementation in SoC-FPGA for visual slam, " in Robotics. SpringerVerlag,
2016, pp. 57-71.
[125] M. Abouzahir, A. Elouardi, S. Bouaziz, R. Latif, and A. Tajer,
" Large-scale monocular FastSLAM2. 0 acceleration on an embedded
heterogeneous architecture, " EURASIP J. Adv. Signal Process., vol. 2016,
no. 1, p. 88, 2016. doi: 10.1186/s13634-016-0386-3.
[126] M. Abouzahir, A. Elouardi, R. Latif, S. Bouaziz, and A. Tajer, " Embedding
SLAM algorithms: Has it come of age? " Robot. Autonom. Syst.,
vol. 100, pp. 14-26, 2018. doi: 10.1016/j.robot.2017.10.019.
[127] K. Boikos and C.-S. Bouganis, " Semi-dense SLAM on an FPGA
SoC, " in Proc. 26th Int. Conf. Field Programmable Logic Appl. (FPL), 2016,
pp. 1-4. doi: 10.1109/FPL.2016.7577365.
[128] K. Boikos and C.-S. Bouganis, " A high-performance system-on-chip
architecture for direct tracking for slam, " in Proc. 27th Int. Conf. Field Programmable
Logic Appl. (FPL), 2017, pp. 1-7. doi: 10.23919/FPL.2017.8056831.
[129] K. Boikos and C.-S. Bouganis, " A scalable FPGA-based architecture
for depth estimation in SLAM, " in Proc. Int. Symp. Appl. Reconfigurable
Comput., 2019, pp. 181-196.
[130] D. DeTone, T. Malisiewicz, and A. Rabinovich, " Superpoint: Self-supervised
interest point detection and description, " in Proc. IEEE Conf.
Comput. Vision and Pattern Recogn. Workshops, 2018, pp. 224-236.
SECOND QUARTER 2021
[131] E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, and F. MorenoNoguer,
" Discriminative learning of deep convolutional feature point descriptors, "
in Proc. IEEE Int. Conf. Comput. Vision, 2015, pp. 118-126.
[132] F. Radenovic´, G. Tolias, and O. Chum, " Fine-tuning CNN image retrieval
with no human annotation, " IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 41, no. 7, pp. 1655-1668, 2018. doi: 10.1109/TPAMI.2018.2846566.
[133] Xilinx. " DPU for convolutional neural network. "
[134] Z. Xu, J. Yu, C. Yu, H. Shen, Y. Wang, and H. Yang, " CNN-based
feature-point extraction for real-time visual slam on embedded FPGA, "
in Proc. IEEE 28th Annu. Int. Symp. Field-Programmable Custom Comput.
Mach. (FCCM), 2020, pp. 33-37. doi: 10.1109/FCCM48280.2020.00014.
[135] S. Han, H. Mao, and W. J. Dally, " Deep compression: Compressing
deep neural networks with pruning, trained quantization and Huffman
coding, " 2015, arXiv:1510.00149.
[136] S. Krishnan, S. Chitlangia, M. Lam, Z. Wan, A. Faust, and V. J. Reddi,
" Quantized reinforcement learning (QUARL), " 2019, arXiv:1910.01055.
[137] H. F. Langroudi, V. Karia, J. L. Gustafson, and D. Kudithipudi,
" Adaptive posit: Parameter aware numerical format for deep learning
inference on the edge, " in Proc. IEEE/CVF Conf. Comput. Vision and Pattern
Recogn. Workshops, 2020, pp. 726-727.
[138] T. Tambe et al., " Algorithm-hardware co-design of adaptive
floating-point encodings for resilient deep learning inference, " in Proc.
57th ACM/IEEE Des. Automat. Conf. (DAC), 2020, pp. 1-6. doi: 10.1109/
DAC18072.2020.9218516.
[139] F. Li, B. Zhang, and B. Liu, " Ternary weight networks, " 2016, arXiv:1605.04711.
[140]
J. Choi, S. Venkataramani, V. Srinivasan, K. Gopalakrishnan, Z.
Wang, and P. Chuang, " Accurate and efficient 2-bit quantized neural networks, "
in Proc. 2nd SysML Conf., 2019, vol. 2019.
[141] J. Kim, K. Yoo, and N. Kwak, " Position-based scaled gradient for model
quantization and pruning, " Adv. Neural Inform. Process. Syst., vol. 33, 2020.
[142] T. Tambe et al., " Adaptivfloat: A floating-point based data type for
resilient deep learning inference, " 2019, arXiv:1909.13271.
[143] J. Yu et al., " CNN-based monocular decentralized SLAM on embedded
FPGA, " 2020.
[144] H. Zhan, R. Garg, C. Saroj Weerasekera, K. Li, H. Agarwal, and I.
Reid, " Unsupervised learning of monocular depth estimation and visual
odometry with deep feature reconstruction, " in Proc. IEEE Conf.
Comput. Vision and Pattern Recogn., 2018, pp. 340-349.
[145] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic, " NetVLAD:
CNN architecture for weakly supervised place recognition, " in
Proc. IEEE Conf. Comput. Vision and Pattern Recogn., 2016, pp. 5297-5307.
[146] J. Yu et al., " INCA: Interruptible CNN accelerator for multi-tasking
in embedded robots, " in Proc. 57th ACM/ESDA/IEEE Des. Automat. Conf.
(DAC), 2020.
[147] R. Mur-Artal and J. D. Tardós, " ORB-SLAM2: An open-source slam
system for monocular, stereo, and RGB-D cameras, " IEEE Trans. Robot.,
vol. 33, no. 5, pp. 1255-1262, 2017. doi: 10.1109/TRO.2017.2705103.
[148] S. Liu, Engineering Autonomous Vehicles and Robots: The DragonFly
Modular-based Approach, 1st ed. Wiley-IEEE Press, Mar. 2020.
[149] M. Maimone, Y. Cheng, and L. Matthies, " Two years of visual
odometry on the mars exploration rovers, " J. Field Robot., vol. 24, no. 3,
pp. 169-186, 2007. doi: 10.1002/rob.20184.
[150] B. Klingner, D. Martin, and J. Roseborough, " Street view motionfrom-structure-from-motion, "
in Proc. IEEE Int. Conf. Comput. Vision,
2013, pp. 953-960.
[151] Y. Jeong, D. Nister, D. Steedly, R. Szeliski, and I.-S. Kweon, " Pushing the
envelope of modern methods for bundle adjustment, " IEEE Trans. Pattern Anal.
Mach. Intell., vol. 34, no. 8, pp. 1605-1617, 2011. doi: 10.1109/TPAMI.2011.256.
[152] C. Wu, S. Agarwal, B. Curless, and S. M. Seitz, " Multicore bundle
adjustment, " in Proc. CVPR 2011, 2011, pp. 3057-3064.
[153] A. Eriksson, J. Bastian, T.-J. Chin, and M. Isaksson, " A consensusbased
framework for distributed bundle adjustment, " in Proc. IEEE
Conf. Comput. Vision and Pattern Recogn., 2016, pp. 1754-1762.
[154] R. Zhang, S. Zhu, T. Fang, and L. Quan, " Distributed very large
scale bundle adjustment by global camera consensus, " in Proc. IEEE Int.
Conf. Comput. Vision, 2017, pp. 29-38.
[155] A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, and V. Sze, " Navion:
A 2-mw fully integrated real-time visual-inertial odometry accelerator
for autonomous navigation of nano drones, " IEEE J. Solid-State Circuits,
vol. 54, no. 4, pp. 1106-1119, 2019. doi: 10.1109/JSSC.2018.2886342.
[156] Q. Liu, S. Qin, B. Yu, J. Tang, and S. Liu, " π-ba: Bundle adjustment
hardware accelerator based on distribution of 3d-point observations, "
IEEE Trans. Comput., 2020.
IEEE CIRCUITS AND SYSTEMS MAGAZINE
73

IEEE Circuits and Systems Magazine - Q2 2021

Table of Contents for the Digital Edition of IEEE Circuits and Systems Magazine - Q2 2021

Contents
IEEE Circuits and Systems Magazine - Q2 2021 - Cover1
IEEE Circuits and Systems Magazine - Q2 2021 - Cover2
IEEE Circuits and Systems Magazine - Q2 2021 - Contents
IEEE Circuits and Systems Magazine - Q2 2021 - 2
IEEE Circuits and Systems Magazine - Q2 2021 - 3
IEEE Circuits and Systems Magazine - Q2 2021 - 4
IEEE Circuits and Systems Magazine - Q2 2021 - 5
IEEE Circuits and Systems Magazine - Q2 2021 - 6
IEEE Circuits and Systems Magazine - Q2 2021 - 7
IEEE Circuits and Systems Magazine - Q2 2021 - 8
IEEE Circuits and Systems Magazine - Q2 2021 - 9
IEEE Circuits and Systems Magazine - Q2 2021 - 10
IEEE Circuits and Systems Magazine - Q2 2021 - 11
IEEE Circuits and Systems Magazine - Q2 2021 - 12
IEEE Circuits and Systems Magazine - Q2 2021 - 13
IEEE Circuits and Systems Magazine - Q2 2021 - 14
IEEE Circuits and Systems Magazine - Q2 2021 - 15
IEEE Circuits and Systems Magazine - Q2 2021 - 16
IEEE Circuits and Systems Magazine - Q2 2021 - 17
IEEE Circuits and Systems Magazine - Q2 2021 - 18
IEEE Circuits and Systems Magazine - Q2 2021 - 19
IEEE Circuits and Systems Magazine - Q2 2021 - 20
IEEE Circuits and Systems Magazine - Q2 2021 - 21
IEEE Circuits and Systems Magazine - Q2 2021 - 22
IEEE Circuits and Systems Magazine - Q2 2021 - 23
IEEE Circuits and Systems Magazine - Q2 2021 - 24
IEEE Circuits and Systems Magazine - Q2 2021 - 25
IEEE Circuits and Systems Magazine - Q2 2021 - 26
IEEE Circuits and Systems Magazine - Q2 2021 - 27
IEEE Circuits and Systems Magazine - Q2 2021 - 28
IEEE Circuits and Systems Magazine - Q2 2021 - 29
IEEE Circuits and Systems Magazine - Q2 2021 - 30
IEEE Circuits and Systems Magazine - Q2 2021 - 31
IEEE Circuits and Systems Magazine - Q2 2021 - 32
IEEE Circuits and Systems Magazine - Q2 2021 - 33
IEEE Circuits and Systems Magazine - Q2 2021 - 34
IEEE Circuits and Systems Magazine - Q2 2021 - 35
IEEE Circuits and Systems Magazine - Q2 2021 - 36
IEEE Circuits and Systems Magazine - Q2 2021 - 37
IEEE Circuits and Systems Magazine - Q2 2021 - 38
IEEE Circuits and Systems Magazine - Q2 2021 - 39
IEEE Circuits and Systems Magazine - Q2 2021 - 40
IEEE Circuits and Systems Magazine - Q2 2021 - 41
IEEE Circuits and Systems Magazine - Q2 2021 - 42
IEEE Circuits and Systems Magazine - Q2 2021 - 43
IEEE Circuits and Systems Magazine - Q2 2021 - 44
IEEE Circuits and Systems Magazine - Q2 2021 - 45
IEEE Circuits and Systems Magazine - Q2 2021 - 46
IEEE Circuits and Systems Magazine - Q2 2021 - 47
IEEE Circuits and Systems Magazine - Q2 2021 - 48
IEEE Circuits and Systems Magazine - Q2 2021 - 49
IEEE Circuits and Systems Magazine - Q2 2021 - 50
IEEE Circuits and Systems Magazine - Q2 2021 - 51
IEEE Circuits and Systems Magazine - Q2 2021 - 52
IEEE Circuits and Systems Magazine - Q2 2021 - 53
IEEE Circuits and Systems Magazine - Q2 2021 - 54
IEEE Circuits and Systems Magazine - Q2 2021 - 55
IEEE Circuits and Systems Magazine - Q2 2021 - 56
IEEE Circuits and Systems Magazine - Q2 2021 - 57
IEEE Circuits and Systems Magazine - Q2 2021 - 58
IEEE Circuits and Systems Magazine - Q2 2021 - 59
IEEE Circuits and Systems Magazine - Q2 2021 - 60
IEEE Circuits and Systems Magazine - Q2 2021 - 61
IEEE Circuits and Systems Magazine - Q2 2021 - 62
IEEE Circuits and Systems Magazine - Q2 2021 - 63
IEEE Circuits and Systems Magazine - Q2 2021 - 64
IEEE Circuits and Systems Magazine - Q2 2021 - 65
IEEE Circuits and Systems Magazine - Q2 2021 - 66
IEEE Circuits and Systems Magazine - Q2 2021 - 67
IEEE Circuits and Systems Magazine - Q2 2021 - 68
IEEE Circuits and Systems Magazine - Q2 2021 - 69
IEEE Circuits and Systems Magazine - Q2 2021 - 70
IEEE Circuits and Systems Magazine - Q2 2021 - 71
IEEE Circuits and Systems Magazine - Q2 2021 - 72
IEEE Circuits and Systems Magazine - Q2 2021 - 73
IEEE Circuits and Systems Magazine - Q2 2021 - 74
IEEE Circuits and Systems Magazine - Q2 2021 - 75
IEEE Circuits and Systems Magazine - Q2 2021 - 76
IEEE Circuits and Systems Magazine - Q2 2021 - 77
IEEE Circuits and Systems Magazine - Q2 2021 - 78
IEEE Circuits and Systems Magazine - Q2 2021 - 79
IEEE Circuits and Systems Magazine - Q2 2021 - 80
IEEE Circuits and Systems Magazine - Q2 2021 - 81
IEEE Circuits and Systems Magazine - Q2 2021 - 82
IEEE Circuits and Systems Magazine - Q2 2021 - 83
IEEE Circuits and Systems Magazine - Q2 2021 - 84
IEEE Circuits and Systems Magazine - Q2 2021 - 85
IEEE Circuits and Systems Magazine - Q2 2021 - 86
IEEE Circuits and Systems Magazine - Q2 2021 - 87
IEEE Circuits and Systems Magazine - Q2 2021 - 88
IEEE Circuits and Systems Magazine - Q2 2021 - 89
IEEE Circuits and Systems Magazine - Q2 2021 - 90
IEEE Circuits and Systems Magazine - Q2 2021 - 91
IEEE Circuits and Systems Magazine - Q2 2021 - 92
IEEE Circuits and Systems Magazine - Q2 2021 - 93
IEEE Circuits and Systems Magazine - Q2 2021 - 94
IEEE Circuits and Systems Magazine - Q2 2021 - 95
IEEE Circuits and Systems Magazine - Q2 2021 - 96
IEEE Circuits and Systems Magazine - Q2 2021 - 97
IEEE Circuits and Systems Magazine - Q2 2021 - 98
IEEE Circuits and Systems Magazine - Q2 2021 - 99
IEEE Circuits and Systems Magazine - Q2 2021 - 100
IEEE Circuits and Systems Magazine - Q2 2021 - 101
IEEE Circuits and Systems Magazine - Q2 2021 - 102
IEEE Circuits and Systems Magazine - Q2 2021 - 103
IEEE Circuits and Systems Magazine - Q2 2021 - 104
IEEE Circuits and Systems Magazine - Q2 2021 - 105
IEEE Circuits and Systems Magazine - Q2 2021 - 106
IEEE Circuits and Systems Magazine - Q2 2021 - 107
IEEE Circuits and Systems Magazine - Q2 2021 - 108
IEEE Circuits and Systems Magazine - Q2 2021 - 109
IEEE Circuits and Systems Magazine - Q2 2021 - 110
IEEE Circuits and Systems Magazine - Q2 2021 - 111
IEEE Circuits and Systems Magazine - Q2 2021 - 112
IEEE Circuits and Systems Magazine - Q2 2021 - 113
IEEE Circuits and Systems Magazine - Q2 2021 - 114
IEEE Circuits and Systems Magazine - Q2 2021 - 115
IEEE Circuits and Systems Magazine - Q2 2021 - 116
IEEE Circuits and Systems Magazine - Q2 2021 - 117
IEEE Circuits and Systems Magazine - Q2 2021 - 118
IEEE Circuits and Systems Magazine - Q2 2021 - 119
IEEE Circuits and Systems Magazine - Q2 2021 - 120
IEEE Circuits and Systems Magazine - Q2 2021 - 121
IEEE Circuits and Systems Magazine - Q2 2021 - 122
IEEE Circuits and Systems Magazine - Q2 2021 - 123
IEEE Circuits and Systems Magazine - Q2 2021 - 124
IEEE Circuits and Systems Magazine - Q2 2021 - 125
IEEE Circuits and Systems Magazine - Q2 2021 - 126
IEEE Circuits and Systems Magazine - Q2 2021 - 127
IEEE Circuits and Systems Magazine - Q2 2021 - 128
IEEE Circuits and Systems Magazine - Q2 2021 - Cover3
IEEE Circuits and Systems Magazine - Q2 2021 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q1
https://www.nxtbookmedia.com