IEEE Circuits and Systems Magazine - Q3 2021 - 28

[29] M. Kim, U. Ha, Y. Lee, K. Lee, and H. Yoo, " A 82nW chaotic-map true
random number generator based on sub-ranging SAR ADC, " in Proc.
IEEE Int. Conf. Eur. Solid-State Circuits, Lausanne, 2016, pp. 157-160.
[30] S. K. Mathew et al., " µRNG: A 300-950 mV, 323 Gbps/W all-digital
full-entropy true random number generator in 14 nm FinFET CMOS, "
IEEE J. Solid-State Circuits, vol. 51, no. 7, pp.1695-1704, July 2016.
[31] A. Singh, N. Chawla, J. H. Ko, M. Kar, and S. Mukhopadhyay, " Energy
efficient and side-channel secure cryptographic hardware for IoT-edge
nodes, " IEEE J. Internet Things, vol. 6, no. 1, pp. 421-434, July 2018. doi:
10.1109/JIOT.2018.2861324.
[32] W. Shan, X. Fu, and Z. Xu, " A secure reconfigurable crypto IC With
countermeasures against SPA, DPA, and EMA, " IEEE Trans. Comput.Aided
Design Integr. Circuits Syst., vol. 34, no. 7, pp. 1201-1205, July 2015.
[33] V. Ganesan, R. Bodduna, and C. Rebeiro, " PARAM: A microprocessor
hardened for power side- channel attack resistance, " in Proc. IEEE Int. Symp.
Hardware-Oriented Security Trust, Hilton Tysons Corner, 2019, pp. 1-12.
[34] E. Tena-Sanchez, J. Castro, and A. J. Acosta, " A methodology for
optimized design of secure differential logic gates for DPA resistant circuits, "
IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 4, no. 2, pp. 203-215,
June 2014. doi: 10.1109/JETCAS.2014.2315878.
[35] S. D. Kumar, H. Thapliyal, and A. Mohammad, " EE-SPFAL: A novel
energy-efficient secure positive feedback adiabatic logic for DPA resistant
RFID and smart card, " IEEE Trans. Emerg. Topics Comput., vol. 7, no.
2, pp. 281-293, June 2019. doi: 10.1109/TETC.2016.2645128.
[36] H. Saini and A. Gupta, " Constant power consumption design of novel
differential logic gate for immunity against differential power analysis, "
IET Circuits, Devices Syst., vol. 13, no. 1, pp. 103-109, Aug. 2018. doi:
10.1049/iet-cds.2018.5093.
[37] S. D. Kumar, H. Thapliyal, and A. Mohammad, " FinSAL: A novel FinFET
based secure adiabatic logic for energy-efficient and DPA resistant
IoT devices, " IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol.
37, no. 1, pp. 110-122, Mar. 2017. doi: 10.1109/TCAD.2017.2685588.
[38] J. Dofe and Q. Yu, " Novel dynamic state-deflection method for gatelevel
design obfuscation, " IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 37, no. 2, pp. 273-285, Feb. 2018. doi: 10.1109/TCAD.2017.2697960.
[39] X. Zhang and Y. Lao, " On the construction of composite finite fields
for hardware obfuscation, " IEEE Trans. Comput., vol. 68, no. 9, pp. 1353-
1364, Sept. 2019. doi: 10.1109/TC.2019.2901483.
[40] A. Sengupta and M. Rathor, " Enhanced security of DSP circuits using
multi-key based structural obfuscation and physical-level watermarking
for consumer electronics systems, " IEEE Trans. Consum. Electron.,
vol. 66, no. 2, pp.163-172, May 2020. doi: 10.1109/TCE.2020.2972808.
[41] A. Sengupta, M. Rathor, S. Patil, and N. G. Harishchandra, " Securing
hardware accelerators using multi-key based structural obfuscation, "
IEEE Comput. Soc. Lett., vol. 3, no. 1, pp. 21-24, Apr. 2020. doi: 10.1109/
LOCS.2020.2984747.
[42] A. Aziz, N. Shukla, S. Datta, and S. K. Gupta, " Steep switching hybrid
phase transition FETs (Hyper-FET) for low power applications: A
device-circuit co-design perspective-Part I, " IEEE Trans. Electron Devices,
vol. 64, no. 3, pp. 1350-1357, Mar. 2017.
[43] J. Liu, M. B. Clavel, and M. K. Hudait, " TBAL: Tunnel FET-based
adiabatic logic for energy-efficient, ultra-low voltage IoT applications, "
IEEE J. Electron Devices Soc., vol. 7, pp. 210-218, Jan. 2019. doi: 10.1109/
JEDS.2019.2891204.
[44] S. K. Sinha and S. Chaudhury, " Impact of oxide thickness on gate capacitance-A
comprehensive analysis on MOSFET, nanowire FET, and
CNTFET devices, " IEEE Trans. Nanotechnol., vol. 12, no. 6, pp. 958-964,
Nov. 2013. doi: 10.1109/TNANO.2013.2278021.
[45] H. Lee, M. Kim, H. Kim, H. Kim, and H. Lee, " Integration and boost
of a read-modify-write module in phase change memory system, " IEEE
Trans. Comput., vol. 68, no. 12, pp. 1772-1784, Dec. 2019. doi: 10.1109/
TC.2019.2933826.
[46] R. Liu, H. Wu, Y. Pang, H. Qian, and S. Yu, " Experimental characterization
of physical unclonable function based on 1kb resistive random
access memory arrays, " IEEE Electron Device Lett., vol. 36, no. 12, pp.
1380-1383, Dec. 2015. doi: 10.1109/LED.2015.2496257.
[47] Y. Qu, J. Han, B. F. Cockburn, W. Pedrycz, Y. Zhang, and W. Zhao, " A
true random number generator based on parallel STT-MTJs, " in Proc.
IEEE Int. Conf. Design, Autom. Test (DATE), Lausanne, 2017, pp. 606-609.
[48] A. Aziz, N. Shukla, S. Datta, and S. K. Gupta, " Steep switching hybrid
phase transition FETs (Hyper-FET) for low power applications: A
device-circuit co-design perspective-Part II, " IEEE Trans. Electron Devices,
vol. 64, no. 3, pp. 1358-1365, Mar. 2017.
28
IEEE CIRCUITS AND SYSTEMS MAGAZINE
[49] H. Madan, V. Saripalli, H. Liu, and S. Datta, " Asymmetric tunnel fieldeffect
transistors as frequency multipliers, " IEEE Electron Device Lett.,
vol. 33, no. 11, pp. 1547-1549, Nov. 2012. doi: 10.1109/LED.2012.2214201.
[50] J. Kim et al., " Nano-intrinsic true random number generation: A
device to data study, " IEEE Trans. Circuits Syst. I, Regular Papers, vol. 66,
no. 7, pp. 2615-2626, July 2019. doi: 10.1109/TCSI.2019.2895045.
[51] Endoh, H. Koike, S. Ikeda, T. Hanyu, and H. Ohno, " An overview of
nonvolatile emerging memories- Spintronics for working memories, "
IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 6, no. 2, pp. 109-119, June
2016. doi: 10.1109/JETCAS.2016.2547704.
[52] H. Thapliyal, T. S. S. Varun, and S. Dinesh Kumar, " Low-power and
secure lightweight cryptography via TFET-based energy recovery circuits, "
in Proc. IEEE Int. Conf. Rebooting Comput., Washington, D.C., 2017,
pp. 1-4.
[53] S. Patnaik, N. Rangarajan, J. Knechtel, O. Sinanoglu, and S. Rakheja,
" Spin-orbit torque devices for hardware security: From deterministic
to probabilistic regime, " IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 39, no. 8, pp. 1591-1606, Aug. 2020. doi: 10.1109/
TCAD.2019.2917856.
[54] Y. Qu, B. F. Cockburn, Z. Huang, H. Cai, Y. Zhang, W. Zhao, and J.
Han, " Variation-resilient true random number generators based on multiple
STT-MTJs, " IEEE Trans. Nanotechnol., vol. 17, no. 6, pp.1270-1281,
Nov. 2018. doi: 10.1109/TNANO.2018.2873970.
[55] L. Zhang, Z. H. Kong, C. H. Chang, A. Cabrini, G. Torelli, " Exploiting
process variations and programming sensitivity of phase change
memory for reconfigurable physical unclonable functions, " IEEE Trans.
Inf. Forensics Security, vol. 9, no. 6, pp. 921-932, June 2014. doi: 10.1109/
TIFS.2014.2315743.
[56] I. M. Delgado-Lozano, E. Tena-Sanchez, J. Nunez, and A. J. Acosta,
" Design and analysis of secure emerging crypto-hardware using HyperFET
devices, " IEEE Trans. Emerg. Topics Comput., Mar. 2020.
[57] J. Aditya, T. Nagateja, S. K. Vishvakarma, P. Yellappa, J. R. Choi,
and R. Vaddi, " Tunneling field effect transistors for enhancing energy
efficiency and hardware security of IoT platforms: Challenges and opportunities, "
in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), Florence,
2018, pp. 1-5.
[58] A. Chen, X. S. Hu, Y. Jin, M. Niemier, and X. Yin, " Using emerging
technologies for hardware security beyond PUFs, " in Proc. IEEE Conf.
Design, Autom. Test, Dresden, 2016, pp. 1544-1549.
[59] G. V. Luong et al., " Strained silicon complementary TFET SRAM:
Experimental demonstration and simulations, " IEEE J. Electron Devices
Soc., vol. 6, pp. 1033-1040, Apr. 2018. doi: 10.1109/JEDS.2018.2825639.
[60] J. Aditya, M. K. Majumder, S. K. Sahoo, and R. Vaddi, " Tunnel FET
ambipolarity-based energy efficient and robust true random number
generator against reverse engineering attacks, " IET Circuits, Devices
Syst., vol. 13, no. 5, pp. 689-695, Aug. 2019. doi: 10.1049/iet-cds.2018.5297.
[61] A. Japa, M. K. Majumder, S. K. Sahoo, and V. Ramesh, " Tunnel FETbased
ultralow‐power and hardware‐secure circuit design considering
p‐i‐n forward leakage, " Int. J. Circuit Theory Appl., vol. 48, no. 4, pp. 524-
538, Jan. 2020.
[62] A. Japa, M. K. Majumder, S. K. Sahoo, and R. Vaddi, " A low area overhead
DPA countermeasure exploiting tunnel transistor based random
number generator, " IET Circuits, Devices Syst., 2020.
[63] C. S. Lee, E. Pop, A. Franklin, W. Haensch, and H. Wong, " A compact
virtual-source model for carbon nanotube FETs in the sub-10-nm regime-Part
I: Intrinsic elements " , IEEE Trans. Electron Devices, vol. 62,
no. 9, pp. 3061-3069, Sept. 2015. doi: 10.1109/TED.2015.2457453.
[64] M. Moradi, S. Tao, and R. F. Mirzaee, " Physical unclonable functions
based on carbon nanotube FETs " , in Proc. IEEE Int. Symp. MultipleValued
Logic, Novi Sad, 2017, pp. 124-129.
[65] S. C. Konigsmark, L. K. Hwang, D. Chen, and M. D. F. Wong, " CNPUF:
A carbon nanotube-based physically unclonable function for secure
low-energy hardware design, " in Proc. IEEE Conf. Asia South Pacific Design
Autom., Singapore, 2014, pp. 73-78.
[66] C. K. Suresh, B. Mazumdar, S. S. Ali, and O. Sinanoglu, " Power-sidechannel
analysis of carbon nanotube FET based design, " in Proc. IEEE
Int. Symp. On-Line Testing Robust System Design, Sant Feliu de Guixols,
2016, pp. 215-218.
[67] S. Fong, C. Neumann, and H. Wong, " Phase-change memory-Towards
a storage-class memory, " IEEE Trans. Electron Devices, vol. 64,
no. 11, pp. 4374-4385, Nov. 2017. doi: 10.1109/TED.2017.2746342.
[68] L. Zhang, C. Chang, A. Cabrini, G. Torelli, and Z. H. Kong, " Leakage-resilient
memory-based physical unclonable function using phase
THIRD QUARTER 2021

IEEE Circuits and Systems Magazine - Q3 2021

Table of Contents for the Digital Edition of IEEE Circuits and Systems Magazine - Q3 2021

Contents
IEEE Circuits and Systems Magazine - Q3 2021 - Cover1
IEEE Circuits and Systems Magazine - Q3 2021 - Cover2
IEEE Circuits and Systems Magazine - Q3 2021 - Contents
IEEE Circuits and Systems Magazine - Q3 2021 - 2
IEEE Circuits and Systems Magazine - Q3 2021 - 3
IEEE Circuits and Systems Magazine - Q3 2021 - 4
IEEE Circuits and Systems Magazine - Q3 2021 - 5
IEEE Circuits and Systems Magazine - Q3 2021 - 6
IEEE Circuits and Systems Magazine - Q3 2021 - 7
IEEE Circuits and Systems Magazine - Q3 2021 - 8
IEEE Circuits and Systems Magazine - Q3 2021 - 9
IEEE Circuits and Systems Magazine - Q3 2021 - 10
IEEE Circuits and Systems Magazine - Q3 2021 - 11
IEEE Circuits and Systems Magazine - Q3 2021 - 12
IEEE Circuits and Systems Magazine - Q3 2021 - 13
IEEE Circuits and Systems Magazine - Q3 2021 - 14
IEEE Circuits and Systems Magazine - Q3 2021 - 15
IEEE Circuits and Systems Magazine - Q3 2021 - 16
IEEE Circuits and Systems Magazine - Q3 2021 - 17
IEEE Circuits and Systems Magazine - Q3 2021 - 18
IEEE Circuits and Systems Magazine - Q3 2021 - 19
IEEE Circuits and Systems Magazine - Q3 2021 - 20
IEEE Circuits and Systems Magazine - Q3 2021 - 21
IEEE Circuits and Systems Magazine - Q3 2021 - 22
IEEE Circuits and Systems Magazine - Q3 2021 - 23
IEEE Circuits and Systems Magazine - Q3 2021 - 24
IEEE Circuits and Systems Magazine - Q3 2021 - 25
IEEE Circuits and Systems Magazine - Q3 2021 - 26
IEEE Circuits and Systems Magazine - Q3 2021 - 27
IEEE Circuits and Systems Magazine - Q3 2021 - 28
IEEE Circuits and Systems Magazine - Q3 2021 - 29
IEEE Circuits and Systems Magazine - Q3 2021 - 30
IEEE Circuits and Systems Magazine - Q3 2021 - 31
IEEE Circuits and Systems Magazine - Q3 2021 - 32
IEEE Circuits and Systems Magazine - Q3 2021 - 33
IEEE Circuits and Systems Magazine - Q3 2021 - 34
IEEE Circuits and Systems Magazine - Q3 2021 - 35
IEEE Circuits and Systems Magazine - Q3 2021 - 36
IEEE Circuits and Systems Magazine - Q3 2021 - 37
IEEE Circuits and Systems Magazine - Q3 2021 - 38
IEEE Circuits and Systems Magazine - Q3 2021 - 39
IEEE Circuits and Systems Magazine - Q3 2021 - 40
IEEE Circuits and Systems Magazine - Q3 2021 - 41
IEEE Circuits and Systems Magazine - Q3 2021 - 42
IEEE Circuits and Systems Magazine - Q3 2021 - 43
IEEE Circuits and Systems Magazine - Q3 2021 - 44
IEEE Circuits and Systems Magazine - Q3 2021 - 45
IEEE Circuits and Systems Magazine - Q3 2021 - 46
IEEE Circuits and Systems Magazine - Q3 2021 - 47
IEEE Circuits and Systems Magazine - Q3 2021 - 48
IEEE Circuits and Systems Magazine - Q3 2021 - 49
IEEE Circuits and Systems Magazine - Q3 2021 - 50
IEEE Circuits and Systems Magazine - Q3 2021 - 51
IEEE Circuits and Systems Magazine - Q3 2021 - 52
IEEE Circuits and Systems Magazine - Q3 2021 - 53
IEEE Circuits and Systems Magazine - Q3 2021 - 54
IEEE Circuits and Systems Magazine - Q3 2021 - 55
IEEE Circuits and Systems Magazine - Q3 2021 - 56
IEEE Circuits and Systems Magazine - Q3 2021 - 57
IEEE Circuits and Systems Magazine - Q3 2021 - 58
IEEE Circuits and Systems Magazine - Q3 2021 - 59
IEEE Circuits and Systems Magazine - Q3 2021 - 60
IEEE Circuits and Systems Magazine - Q3 2021 - 61
IEEE Circuits and Systems Magazine - Q3 2021 - 62
IEEE Circuits and Systems Magazine - Q3 2021 - 63
IEEE Circuits and Systems Magazine - Q3 2021 - 64
IEEE Circuits and Systems Magazine - Q3 2021 - 65
IEEE Circuits and Systems Magazine - Q3 2021 - 66
IEEE Circuits and Systems Magazine - Q3 2021 - 67
IEEE Circuits and Systems Magazine - Q3 2021 - 68
IEEE Circuits and Systems Magazine - Q3 2021 - 69
IEEE Circuits and Systems Magazine - Q3 2021 - 70
IEEE Circuits and Systems Magazine - Q3 2021 - 71
IEEE Circuits and Systems Magazine - Q3 2021 - 72
IEEE Circuits and Systems Magazine - Q3 2021 - 73
IEEE Circuits and Systems Magazine - Q3 2021 - 74
IEEE Circuits and Systems Magazine - Q3 2021 - 75
IEEE Circuits and Systems Magazine - Q3 2021 - 76
IEEE Circuits and Systems Magazine - Q3 2021 - 77
IEEE Circuits and Systems Magazine - Q3 2021 - 78
IEEE Circuits and Systems Magazine - Q3 2021 - 79
IEEE Circuits and Systems Magazine - Q3 2021 - 80
IEEE Circuits and Systems Magazine - Q3 2021 - 81
IEEE Circuits and Systems Magazine - Q3 2021 - 82
IEEE Circuits and Systems Magazine - Q3 2021 - 83
IEEE Circuits and Systems Magazine - Q3 2021 - 84
IEEE Circuits and Systems Magazine - Q3 2021 - 85
IEEE Circuits and Systems Magazine - Q3 2021 - 86
IEEE Circuits and Systems Magazine - Q3 2021 - 87
IEEE Circuits and Systems Magazine - Q3 2021 - 88
IEEE Circuits and Systems Magazine - Q3 2021 - 89
IEEE Circuits and Systems Magazine - Q3 2021 - 90
IEEE Circuits and Systems Magazine - Q3 2021 - 91
IEEE Circuits and Systems Magazine - Q3 2021 - 92
IEEE Circuits and Systems Magazine - Q3 2021 - 93
IEEE Circuits and Systems Magazine - Q3 2021 - 94
IEEE Circuits and Systems Magazine - Q3 2021 - 95
IEEE Circuits and Systems Magazine - Q3 2021 - 96
IEEE Circuits and Systems Magazine - Q3 2021 - Cover3
IEEE Circuits and Systems Magazine - Q3 2021 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q1
https://www.nxtbookmedia.com