IEEE Circuits and Systems Magazine - Q3 2021 - 30

counterfeit, " IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 27, no.
11, pp. 2511-2522, Nov. 2019. doi: 10.1109/TVLSI.2019.2931481.
[110] L. Zhang, Z. H. Kong, and C. Chang, " PCKGen: A phase change
memory based cryptographic key generator, " in Proc. IEEE Int. Symp.
Circuits Syst., Beijing, 2013, pp. 1444-1447.
[111] T. Wang, G. Zhang, A. Liu, M. Bhuiyan, and Q. Jin, " A secure IoT
service architecture with an efficient balance dynamics based on cloud
and edge computing " , IEEE J. Internet Things, vol. 6, no. 3, pp. 4831-
4843, Sept. 2018. doi: 10.1109/JIOT.2018.2870288.
[112] A. Kumar, C. Scarborough, A. Yilmaz, and M. Orshansky, " Efficient
simulation of EM side-channel attack resilience, " in Proc. IEEE/ACM Int.
Conf. Comput.-Aided Design, Irvine, CA, 2017, pp. 123-130.
[113] S. Lee, T. Kim, and Y. Kang, " A masked white-box cryptographic
implementation for protecting against differential computation analysis, "
IEEE Trans. Inf. Forensics Security, vol. 13, no. 10, pp. 2602-2615, Oct.
2018. doi: 10.1109/TIFS.2018.2825939.
[114] W. Yu and S. Kose, " A voltage regulator-assisted lightweight AES implementation
against DPA attacks " , IEEE Trans. Circuits Syst. I, Regular Papers,
vol. 63, no. 8, pp. 1152-1163, Aug. 2016. doi: 10.1109/TCSI.2016.2555810.
[115] M. Kar, A. Singh, S. Mathew, A. Rajan, V. De, and S. Mukhopadhyay,
" Improved power-side-channel-attack resistance of an AES-128 core via
a security-aware integrated buck voltage regulator, " in IEEE Int. SolidState
Circuits Conf. Dig. Tech. Papers, San Francisco, 2017, pp. 142-143.
[116] P. C. Liu, H. C. Chang, and C. Y. Lee, " A true random-based differential
power analysis countermeasure circuit for an AES engine " , IEEE
Trans. Circuits Syst. II, Exp. Briefs, vol. 59, no. 2, pp. 103-107, Feb. 2012.
doi: 10.1109/TCSII.2011.2180094.
[117] S. D. Kumar and H. Thapliyal, " Exploration of non-volatile MTJ/
CMOS circuits for DPA-resistant embedded hardware, " IEEE Trans.
Magn., vol. 55, no. 12, pp. 1-8, Dec. 2019. doi: 10.1109/TMAG.2019.2943053.
[118] H. Thapliyal, T. S. S. Varun, and S. D. Kumar, " Cryptography via
TFET-based energy recovery circuits, " in Proc. IEEE Int. Conf. Rebooting
Comput., Washington, D.C., 2017, pp. 1-4.
[119] Y. Bi, K. Shamsi, J. S. Yuan, Y. Jin, M. Niemier, and X. S. Hu, " Tunnel
FET current mode logic for DPA-resilient circuit designs, " IEEE Trans.
Emerg. Topics Comput., vol. 5, no. 3, pp. 340-352, Apr. 2016. doi: 10.1109/
TETC.2016.2559159.
[120] J. S. Yuan, J. Lin, Q. Alasad, and S. Taheri, " Ultra-low-power design
and hardware security using emerging technologies for internet of
things, " Electronics, vol. 6, no. 3, pp. 67-77, Sept. 2017.
[121] G. Li, V. Iyer, and M. Orshansky, " Securing AES against localized
EM attacks through spatial randomization of dataflow, " in Proc. IEEE
Int. Symp. Hardware-Oriented Security Trust, McLean, 2019, pp. 191-197.
[122] A. Singh, M. Kar, S. Mathew, A. Rajan, V. De, and S. Mukhopadhyay,
" A 128b AES engine with higher resistance to power and electromagnetic
side-channel attacks enabled by a security-aware integrated alldigital
low-dropout regulator, " in IEEE Int. Solid-State Circuits Conf. Dig.
Tech. Papers, San Francisco, 2019, pp. 404-406.
[123] A. Singh et al., " Improved power/EM side-channel attack resistance of
128-Bit AES engines with random fast voltage dithering, " IEEE J. Solid-State
Circuits, vol. 54, no. 2, pp. 569-583, Feb. 2019. doi: 10.1109/JSSC.2018.2875112.
[124] C. Wang, Y. Cai, H. Wang, and Q. Zhou, " Electromagnetic equalizer:
An active countermeasure against EM side-channel attack, " in Proc.
IEEE/ACM Int. Conf. Computer-Aided Design, San Diego, 2018, pp. 1-8.
[125] D. Das, M. Nath, B. Chatterjee, S. Ghosh, and S. Sen, " STELLAR:
A generic EM side-channel attack protection through ground-up rootcause
analysis, " in Proc. IEEE Int. Symp. Hardware-Oriented Security
Trust, McLean, 2019, pp. 11-20.
[126] E. Amini, A. Beyreuther, N. Herfurth, A. Steigert, B. Szyszka, and C.
Boit, " Assessment of a chip backside protection, " J. Hardware Syst. Security,
vol. 2, no. 4, pp. 345-352, Oct. 2018. doi: 10.1007/s41635-018-0052-3.
[127] S. Manich Bou, D. Arumi Delgado, R. Rodríguez Montanes, J. Mujal
Colell, and D. Hernández García, " Backside polishing detector: A new
protection against backside attacks, " in Proc. Int. Conf. Design Circuits
Integr. Syst., 2015, pp. 1-6.
[128] N. Vashistha, M. T. Rahman, O. P. Paradis, and N. Asadizanjani, " Is
backside the new backdoor in modern SoCs?: Invited paper, " in Proc.
IEEE Int. Test Conf., Washington, D.C., 2019, pp. 1-10.
[129] S. Patnaik, N. Rangarajan, J. Knechtel, O. Sinanoglu, and S. Rakheja,
" Spin-orbit torque devices for hardware security: From deterministic to
probabilistic regime, " IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 39, no. 8, pp. 1591-1606, Aug. 2020. doi: 10.1109/TCAD.2019.2917856.
[130] P. W. Barone, S. Baik, D. A. Heller, and M. S. Strano, " Near-infrared
optical sensors based on single-walled carbon nanotubes, " Nature Mater.,
vol. 4, no. 1, pp. 86-92, Jan. 2005. doi: 10.1038/nmat1276.
[131] Y. Zhang et al., " Broadband high photo response from pure monolayer
graphene photodetector, " Nature commun., vol. 4, no. 1, pp. 1-11,
May 2013. doi: 10.1038/ncomms2830.
[132] M. Rathor and A. Sengupta, " Robust logic locking for securing reusable
DSP cores, " IEEE Access, vol. 7, pp. 120,052-120,064, Aug. 2019.
[133] A. Vijayakumar, V. C. Patil, D. E. Holcomb, C. Paar, and S. Kundu,
" Physical design obfuscation of hardware: A comprehensive investigation
of device and logic-level techniques, " IEEE Trans. Inf. Forensics Security,
vol. 12, no. 1, pp. 64-77, Aug. 2016. doi: 10.1109/TIFS.2016.2601067.
[134] J. B. Wendt and M. Potkonjak, " Hardware obfuscation using PUFbased
logic, " in Proc. IEEE/ACM Int. Conf. Computer-Aided Design, San
Jose, 2014, pp. 270-271.
[135] S. Roshanisefat, H. M. Kamali, H. Homayoun, and A. Sasan, " SAThard
cyclic logic obfuscation for protecting the IP in the manufacturing
supply chain, " IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 28,
no. 4, pp. 954-967, Apr. 2020. doi: 10.1109/TVLSI.2020.2968552.
[136] M. Li, K. Shamsi, T. Meade, Z. Zhao, B. Yu, Y. Jin, and D. Z. Pan,
" Provably secure camouflaging strategy for IC protection, " IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 38, no. 8, pp. 1399-1412,
Sept. 2017. doi: 10.1109/TCAD.2017.2750088.
[137] J. Zhang, " A practical logic obfuscation technique for hardware
Security " IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 24, no. 3,
pp. 1193-1197, June 2015. doi: 10.1109/TVLSI.2015.2437996.
[138] S. Patnaik, M. Ashraf, O Sinanoglu, and J. Knechtel, " A modern approach
to IP protection and trojan prevention: Split manufacturing for
3D ICs and obfuscation of vertical interconnects, " IEEE Trans. Emerg.
Topics Comput., Aug. 2019.
[139] B. Hill, R. Karmazin, C. T. O. Otero, J. Tse, and R. Manohar, ''A
splitfoundry asynchronous FPGA,'' in Proc. IEEE Conf. Custom Integr.
Circuits, Sept. 2013, pp. 1-4.
[140] J. Dofe, Q. Yu, H. Wang, and E. Salman, " Hardware Security threats
and potential countermeasures in emerging 3D ICs, " in Proc. Great Lakes
Symp. VLSI, Boston, May. 2016, pp. 69-74. doi: 10.1145/2902961.2903014.
[141] T. D. Perez and S. Pagliarini, " A survey on split manufacturing:
Attacks, defenses, and challenges, " IEEE Access, vol. 8, pp. 184,013-
184,035, Oct. 2020.
[142] J. Yang, X. Wang, Q. Zhou, Z. Wang, H. Li, Y. Chen, and W. Zhao,
" Exploiting spin-orbit torque devices as reconfigurable logic for circuit
obfuscation, " IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol.
38, no. 1, pp. 57-69, Feb. 2018. doi: 10.1109/TCAD.2018.2802870.
[143] J. S. Yuan, J. Lin, Q. Alasad, and S. Taheri, " Ultra-low-power design
and hardware security using emerging technologies for Internet of
Things, " Electronics, vol. 6, no. 3, pp. 66-67, Sept. 2017.
[144] G. Kolhe, S. M. PD, S. Rafatirad, H. Mahmoodi, A. Sasan, and
H. Homayoun,
" On custom lut-based obfuscation, "
in Proc.
IEEE
Great Lakes Symp. VLSI, Tysons Corner, 2019, pp. 477-482. doi:
10.1145/3299874.3319496.
[145] S. Cristoloveanu, J. Wan and A. Zaslavsky, " A review of sharpswitching
devices for ultra-low power applications, " IEEE J. Electron
Devices Soc., vol. 4, no. 5, pp. 215-226, Sept. 2016. doi: 10.1109/JEDS.2016
.2545978.
[146] M. Kobayashi, K. Jang, N. Ueyama, and T. Hiramoto, " Negative
capacitance for boosting tunnel FET performance, " IEEE Trans. Nanotechnol.,
vol. 16, no. 2, pp. 253-258, Mar. 2017. doi: 10.1109/TNANO.2017
.2658688.
[147] Y. Zhao et al., " A novel negative capacitance tunnel FET with improved
subthreshold swing and nearly non-hysteresis through hybrid
modulation, " IEEE Electron Device Lett., vol. 40, no. 6, pp. 989-992, June
2019. doi: 10.1109/LED.2019.2909410.
[148] E. A. Casu et al., " Hybrid phase-change - Tunnel FET (PC-TFET)
switch with subthreshold swing < 10mV/decade and sub-0.1 body factor:
Digital and analog benchmarking, " in Proc. IEEE Int. Electron Devices
Meeting, San Francisco, 2016, pp. 19.3.1-19.3.4.
[149] M. Rostami, F. Koushanfar, and R. Karri, " A primer on hardware
security: Models, methods, and metrics, " Proc. IEEE, vol. 102, no. 8,
pp. 1283-1295, Aug. 2014. doi: 10.1109/JPROC.2014.2335155.
[150] J. Rajendran et al., " Nano meets security: Exploring nanoelectronic
devices for security applications, " Proc. IEEE, vol. 103, no. 5,
pp. 829-849, May 2015. doi: 10.1109/JPROC.2014.2387353.
30
IEEE CIRCUITS AND SYSTEMS MAGAZINE
THIRD QUARTER 2021

IEEE Circuits and Systems Magazine - Q3 2021

Table of Contents for the Digital Edition of IEEE Circuits and Systems Magazine - Q3 2021

Contents
IEEE Circuits and Systems Magazine - Q3 2021 - Cover1
IEEE Circuits and Systems Magazine - Q3 2021 - Cover2
IEEE Circuits and Systems Magazine - Q3 2021 - Contents
IEEE Circuits and Systems Magazine - Q3 2021 - 2
IEEE Circuits and Systems Magazine - Q3 2021 - 3
IEEE Circuits and Systems Magazine - Q3 2021 - 4
IEEE Circuits and Systems Magazine - Q3 2021 - 5
IEEE Circuits and Systems Magazine - Q3 2021 - 6
IEEE Circuits and Systems Magazine - Q3 2021 - 7
IEEE Circuits and Systems Magazine - Q3 2021 - 8
IEEE Circuits and Systems Magazine - Q3 2021 - 9
IEEE Circuits and Systems Magazine - Q3 2021 - 10
IEEE Circuits and Systems Magazine - Q3 2021 - 11
IEEE Circuits and Systems Magazine - Q3 2021 - 12
IEEE Circuits and Systems Magazine - Q3 2021 - 13
IEEE Circuits and Systems Magazine - Q3 2021 - 14
IEEE Circuits and Systems Magazine - Q3 2021 - 15
IEEE Circuits and Systems Magazine - Q3 2021 - 16
IEEE Circuits and Systems Magazine - Q3 2021 - 17
IEEE Circuits and Systems Magazine - Q3 2021 - 18
IEEE Circuits and Systems Magazine - Q3 2021 - 19
IEEE Circuits and Systems Magazine - Q3 2021 - 20
IEEE Circuits and Systems Magazine - Q3 2021 - 21
IEEE Circuits and Systems Magazine - Q3 2021 - 22
IEEE Circuits and Systems Magazine - Q3 2021 - 23
IEEE Circuits and Systems Magazine - Q3 2021 - 24
IEEE Circuits and Systems Magazine - Q3 2021 - 25
IEEE Circuits and Systems Magazine - Q3 2021 - 26
IEEE Circuits and Systems Magazine - Q3 2021 - 27
IEEE Circuits and Systems Magazine - Q3 2021 - 28
IEEE Circuits and Systems Magazine - Q3 2021 - 29
IEEE Circuits and Systems Magazine - Q3 2021 - 30
IEEE Circuits and Systems Magazine - Q3 2021 - 31
IEEE Circuits and Systems Magazine - Q3 2021 - 32
IEEE Circuits and Systems Magazine - Q3 2021 - 33
IEEE Circuits and Systems Magazine - Q3 2021 - 34
IEEE Circuits and Systems Magazine - Q3 2021 - 35
IEEE Circuits and Systems Magazine - Q3 2021 - 36
IEEE Circuits and Systems Magazine - Q3 2021 - 37
IEEE Circuits and Systems Magazine - Q3 2021 - 38
IEEE Circuits and Systems Magazine - Q3 2021 - 39
IEEE Circuits and Systems Magazine - Q3 2021 - 40
IEEE Circuits and Systems Magazine - Q3 2021 - 41
IEEE Circuits and Systems Magazine - Q3 2021 - 42
IEEE Circuits and Systems Magazine - Q3 2021 - 43
IEEE Circuits and Systems Magazine - Q3 2021 - 44
IEEE Circuits and Systems Magazine - Q3 2021 - 45
IEEE Circuits and Systems Magazine - Q3 2021 - 46
IEEE Circuits and Systems Magazine - Q3 2021 - 47
IEEE Circuits and Systems Magazine - Q3 2021 - 48
IEEE Circuits and Systems Magazine - Q3 2021 - 49
IEEE Circuits and Systems Magazine - Q3 2021 - 50
IEEE Circuits and Systems Magazine - Q3 2021 - 51
IEEE Circuits and Systems Magazine - Q3 2021 - 52
IEEE Circuits and Systems Magazine - Q3 2021 - 53
IEEE Circuits and Systems Magazine - Q3 2021 - 54
IEEE Circuits and Systems Magazine - Q3 2021 - 55
IEEE Circuits and Systems Magazine - Q3 2021 - 56
IEEE Circuits and Systems Magazine - Q3 2021 - 57
IEEE Circuits and Systems Magazine - Q3 2021 - 58
IEEE Circuits and Systems Magazine - Q3 2021 - 59
IEEE Circuits and Systems Magazine - Q3 2021 - 60
IEEE Circuits and Systems Magazine - Q3 2021 - 61
IEEE Circuits and Systems Magazine - Q3 2021 - 62
IEEE Circuits and Systems Magazine - Q3 2021 - 63
IEEE Circuits and Systems Magazine - Q3 2021 - 64
IEEE Circuits and Systems Magazine - Q3 2021 - 65
IEEE Circuits and Systems Magazine - Q3 2021 - 66
IEEE Circuits and Systems Magazine - Q3 2021 - 67
IEEE Circuits and Systems Magazine - Q3 2021 - 68
IEEE Circuits and Systems Magazine - Q3 2021 - 69
IEEE Circuits and Systems Magazine - Q3 2021 - 70
IEEE Circuits and Systems Magazine - Q3 2021 - 71
IEEE Circuits and Systems Magazine - Q3 2021 - 72
IEEE Circuits and Systems Magazine - Q3 2021 - 73
IEEE Circuits and Systems Magazine - Q3 2021 - 74
IEEE Circuits and Systems Magazine - Q3 2021 - 75
IEEE Circuits and Systems Magazine - Q3 2021 - 76
IEEE Circuits and Systems Magazine - Q3 2021 - 77
IEEE Circuits and Systems Magazine - Q3 2021 - 78
IEEE Circuits and Systems Magazine - Q3 2021 - 79
IEEE Circuits and Systems Magazine - Q3 2021 - 80
IEEE Circuits and Systems Magazine - Q3 2021 - 81
IEEE Circuits and Systems Magazine - Q3 2021 - 82
IEEE Circuits and Systems Magazine - Q3 2021 - 83
IEEE Circuits and Systems Magazine - Q3 2021 - 84
IEEE Circuits and Systems Magazine - Q3 2021 - 85
IEEE Circuits and Systems Magazine - Q3 2021 - 86
IEEE Circuits and Systems Magazine - Q3 2021 - 87
IEEE Circuits and Systems Magazine - Q3 2021 - 88
IEEE Circuits and Systems Magazine - Q3 2021 - 89
IEEE Circuits and Systems Magazine - Q3 2021 - 90
IEEE Circuits and Systems Magazine - Q3 2021 - 91
IEEE Circuits and Systems Magazine - Q3 2021 - 92
IEEE Circuits and Systems Magazine - Q3 2021 - 93
IEEE Circuits and Systems Magazine - Q3 2021 - 94
IEEE Circuits and Systems Magazine - Q3 2021 - 95
IEEE Circuits and Systems Magazine - Q3 2021 - 96
IEEE Circuits and Systems Magazine - Q3 2021 - Cover3
IEEE Circuits and Systems Magazine - Q3 2021 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q1
https://www.nxtbookmedia.com