IEEE Circuits and Systems Magazine - Q3 2021 - 56

[96] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, " Tetris: Scalable
and efficient neural network acceleration with 3D memory, " in
Proc. ACM Int. Conf. Architectural Support Programming Languages Operating
Syst. (ASPLOS), 2017. doi: 10.1145/3037697.3037702.
[97] P.-Y. Chen, X. Peng, and S. Yu, " NeuroSim+: An integrated deviceto-algorithm
framework for benchmarking synaptic devices and array
architectures, " in Proc. IEEE Int. Electron Devices Meeting (IEDM), 2017.
[98] L. Xia et al., " MNSIM: simulation platform for memristor-based
neuromorphic computing system, " IEEE Trans. Comput.-Aided Des. Integrated
Circuits Systems, vol. 37, no. 5, pp. 1009-1022, 2018.
[99] S. Jain, A. Sengupta, K. Roy, and A. Raghunathan, " RxNN: A framework
for evaluating deep neural networks on resistive crossbars, " IEEE
Trans. Comput.-Aided Des. Integrated Circuits Systems, early access, 2020.
doi: 10.1109/TCAD.2020.3000185.
[100] " CrossSim, " Sandia National Lab., [Online]. Available: https://
cross-sim.sandia.gov/
[101] " IBM Analog Hardware Acceleration Kit, " [Online]. Available:
https://analog-ai.mybluemix.net/
[102] P.-Y. Chen, X. Peng, and S. Yu, " NeuroSim: A circuit-level macro
model for benchmarking neuro-inspired architectures in online learning, "
IEEE Trans. Comput.-Aided Des. Integrated Circuits Syst., vol. 37, no.
12, pp. 3067-3080, 2018. doi: 10.1109/TCAD.2018.2789723.
[103] " Predictive Technology Model (PTM), " [Online]. Available: http://
ptm.asu.edu/
[104] X. Peng, S. Huang, Y. Luo, X. Sun, and S. Yu, " DNN+NeuroSim: An
end-to-end benchmarking framework for compute-in-memory accelerators
with versatile device technologies, " in Proc. IEEE Int. Electron Devices
Meeting (IEDM), 2019.
[105] " DNN_NeuroSim_V1.2, " 2019. [Online]. Available: https://github
.com/neurosim/DNN_NeuroSim_V1.2
[106] " DNN+NeuroSim V2.1, " 2020. [Online]. Available: https://github
.com/neurosim/DNN_NeuroSim_V2.1
[107] S. Wu, G. Li, F. Chen, and L. Shi, " Training and inference with integers
in deep neural networks, " in Proc. Int. Conf. Learning Representations
(ICLR), 2018.
[108] X. Peng, R. Liu, and S. Yu, " Optimizing weight mapping and data
flow for convolutional neural networks on processing-in-memory architectures, "
IEEE Trans. Circuits Systems I: Regular Papers, vol. 67, no. 4, pp.
1333-1343, 2020. doi: 10.1109/TCSI.2019.2958568.
[109] W. Wu et al., " A methodology to improve linearity of analog RRAM for
neuromorphic computing, " in Proc. IEEE Symp. VLSI Technol. (VLSI), 2018.
[110] K. N et al., " In-memory computing primitive for sensor data fusion
in 28 nm HKMG FeFET technology, " in Proc. IEEE Int. Electron Devices
Meeting (IEDM), 2018.
[111] J. Doevenspeck et al., " SOT-MRAM based analog in-memory computing
for DNN inference, " in Proc. IEEE Symp. VLSI Technol., 2020.
[112] K. Ni et al., " SoC logic compatible multi-bit FeMFET weight cell for
neuromorphic applications, " in Proc. IEEE Int. Electron Devices Meeting
(IEDM), 2018.
[113] Y. Luo et al., " A variation robust inference engine based on STTMRAM
with parallel read-out, " in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
2020.
[114] A. Prakash, J. Park, J. Song, J. Woo, E.-J. Cha, and H. Hwang, " Demonstration
of low power 3-bit multilevel cell characteristics in a TaOxbased
RRAM by stack engineering, " IEEE Electron Device Lett., vol. 36,
no. 1, pp. 32-34, 2015. doi: 10.1109/LED.2014.2375200.
[115] B. Q. Le et al., " Resistive RAM with multiple bits per cell: Arraylevel
demonstration of 3 bits per cell, " IEEE Trans. Electron Devices, vol.
66, no. 1, pp. 641-646, 2018. doi: 10.1109/TED.2018.2879788.
[116] C. Wang et al., " Relaxation effect in RRAM arrays: demonstration
and characteristics, " IEEE Electron Device Lett., vol. 37, no. 2, pp. 182-
185, 2015. doi: 10.1109/LED.2015.2508034.
[117] M. Zhao et al., " Investigation of statistical retention of filamentary
analog RRAM for neuromophic computing, " in Proc. IEEE Int. Electron
Devices Meeting (IEDM), 2017.
[118] W. Shim, Y. Luo, J.-S. Seo, and S. Yu, " Investigation of read disturb
and bipolar read scheme on multilevel RRAM-based deep learning inference
engine, " IEEE Trans. Electron Devices, vol. 67, no. 6, pp. 2318-
2323, 2020. doi: 10.1109/TED.2020.2985013.
[119] Y. Luo and S. Yu, " AILC: Accelerate on-chip incremental learning with
compute-in-memory technology, " IEEE Trans. Comput., early access, 2021.
[120] M. Zhao et al., " Characterizing endurance degradation of incremental
switching in analog RRAM for neuromorphic systems, " IEEE Int.
Electron Devices Meeting (IEDM), 2018.
[121] G. W. Burr et al., " Large-scale neural networks implemented with
non-volatile memory as the synaptic weight element: comparative performance
analysis (accuracy, speed, and power), " in Proc. IEEE Int. Electron
Devices Meeting (IEDM), 2015.
[122] T. Gokmen and W. Haensch, " Algorithm for training neural networks
on resistive device arrays, " Front. Neurosci., vol. 14, p. 103, 2020.
[123] S. Huang, X. Sun, X. Peng, H. Jiang, and S. Yu, " Overcoming challenges
for achieving high in-situ training accuracy with emerging
memories, " in Proc. ACM/IEEE Des., Automation & Test in Europe Conf.
(DATE), 2020.
[124] S. Ambrogio et al., " Equivalent-accuracy accelerated neural network
training using analogue memory, " Nature , vol. 558, pp. 60-67,
2018. doi: 10.1038/s41586-018-0180-5.
[125] X. Sun, P. Wang, K. Ni, S. Datta, and S. Yu, " Exploiting hybrid
precision for training and inference: A 2T-1FeFET based analog
synaptic weight cell, " in Proc. IEEE Int. Electron Devices Meeting
(IEDM), 2018.
[126] H. Jiang et al., " A two-way SRAM array based accelerator for deep
neural network on-chip training, " in Proc. ACM/IEEE Design Automat.
Conf. (DAC), 2020.
[127] Y. Luo and S. Yu, " Accelerating deep neural network in-situ training
with non-volatile and volatile memory based hybrid precision
synapses, " IEEE Trans. Comput., vol. 69, no. 8, pp. 1113-1127, 2020. doi:
10.1109/TC.2020.3000218.
[128] I. Yoon, M. A. Anwar, R. V. Joshi, T. Rakshit, and A. Raychowdhury,
" Hierarchical memory system with STT-MRAM and SRAM to support
transfer and real-time reinforcement learning in autonomous drones, "
IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 9, no. 3, pp. 485-497, 2019.
doi: 10.1109/JETCAS.2019.2932285.
[129] Z. Wang et al., " A 57nW software-defined always-on wake-up chip
for IoT devices with asynchronous pipelined event-driven architecture
and time-shielding level-crossing ADC, " in Proc. IEEE Int. Solid-State Circuits
Conf. (ISSCC), 2020.
[130] G. Murali, X. Sun, S. Yu, and S.-K. Lim, " Heterogeneous mixedsignal
monolithic 3D in-memory computing using resistive RAM, " IEEE
Trans. VLSI Syst., early access, 2021.
[131] L. Brunet et al., " Breakthroughs in 3D sequential technology, " in
Proc. IEEE Int. Electron Devices Meeting (IEDM), 2018.
[132] W. Chakraborty, B. Grisafe, H. Ye, I. Lightcap, K. Ni, and S. Datta,
" BEOL compatible dual-gate ultra thin-body W-doped indium-oxide
transistor with Ion = 370uA/um, SS = 73mV/dec and Ion/Ioff ratio >
4×109, " in Proc. IEEE Symp. VLSI Technol., 2020.
[133] A. Shafiee et al., " ISAAC: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars, " in Proc. ACM/IEEE Int.
Symp. Comput. Architecture (ISCA), 2016.
[134] P. Chi et al., " PRIME: A novel processing-in-memory architecture
for neural network computation in ReRAM-based main memory, " in
Proc. ACM/IEEE Int. Symp. Comput. Architecture (ISCA), 2016.
[135] L. Song, X. Qian, H. Li, and Y. Chen, " PipeLayer: A pipelined RRAMbased
accelerator for deep learning, " in Proc. IEEE Int. Symp. High Performance
Comput. Architecture (HPCA), 2017.
[136] M. Cheng et al., " TIME: A training-in-memory architecture for
RRAM-based deep neural networks, " IEEE Trans. Comput.-Aided Des.
Integrated Circuits Syst., vol. 38, no. 5, pp. 834-847, 2019. doi: 10.1109/
TCAD.2018.2824304.
[137] A. Lu, X. Peng, Y. Luo, S. Huang, and S. Yu, " A runtime reconfigurable
design of compute-in-memory based hardware accelerator, " in
Proc. ACM/IEEE Des., Automat. Test Europe Conf. (DATE), 2021.
[138] S. Huang, H. Jiang, X. Peng, W. Li, and S. Yu, " XOR-CIM: Computein-memory
SRAM architecture with embedded XOR encryption, "
in Proc. ACM/IEEE Int. Conf. Comput.-Aided Des. (ICCAD), 2020. doi:
10.1145/3400302.3415678.
[139] S. Huang, X. Peng, H. Jiang, Y. Luo, and S. Yu, " New security challenges
on machine learning inference engine: Chip cloning and model
reverse engineering, " 2020, arXiv:2003.09739.
[140] T. Liu and W. Wen, " Making the fault-tolerance of emerging neural
network accelerators scalable, " in Proc. ACM/IEEE Int. Conf. Comput.Aided
Des. (ICCAD), 2020.
56
IEEE CIRCUITS AND SYSTEMS MAGAZINE
THIRD QUARTER 2021
http://cross-sim.sandia.gov/ http://cross-sim.sandia.gov/ https://analog-ai.mybluemix.net/ http://ptm.asu.edu/ http://ptm.asu.edu/ https://github.com/neurosim/DNN_NeuroSim_V1.2 https://github.com/neurosim/DNN_NeuroSim_V1.2 https://github.com/neurosim/DNN_NeuroSim_V2.1 https://github.com/neurosim/DNN_NeuroSim_V2.1

IEEE Circuits and Systems Magazine - Q3 2021

Table of Contents for the Digital Edition of IEEE Circuits and Systems Magazine - Q3 2021

Contents
IEEE Circuits and Systems Magazine - Q3 2021 - Cover1
IEEE Circuits and Systems Magazine - Q3 2021 - Cover2
IEEE Circuits and Systems Magazine - Q3 2021 - Contents
IEEE Circuits and Systems Magazine - Q3 2021 - 2
IEEE Circuits and Systems Magazine - Q3 2021 - 3
IEEE Circuits and Systems Magazine - Q3 2021 - 4
IEEE Circuits and Systems Magazine - Q3 2021 - 5
IEEE Circuits and Systems Magazine - Q3 2021 - 6
IEEE Circuits and Systems Magazine - Q3 2021 - 7
IEEE Circuits and Systems Magazine - Q3 2021 - 8
IEEE Circuits and Systems Magazine - Q3 2021 - 9
IEEE Circuits and Systems Magazine - Q3 2021 - 10
IEEE Circuits and Systems Magazine - Q3 2021 - 11
IEEE Circuits and Systems Magazine - Q3 2021 - 12
IEEE Circuits and Systems Magazine - Q3 2021 - 13
IEEE Circuits and Systems Magazine - Q3 2021 - 14
IEEE Circuits and Systems Magazine - Q3 2021 - 15
IEEE Circuits and Systems Magazine - Q3 2021 - 16
IEEE Circuits and Systems Magazine - Q3 2021 - 17
IEEE Circuits and Systems Magazine - Q3 2021 - 18
IEEE Circuits and Systems Magazine - Q3 2021 - 19
IEEE Circuits and Systems Magazine - Q3 2021 - 20
IEEE Circuits and Systems Magazine - Q3 2021 - 21
IEEE Circuits and Systems Magazine - Q3 2021 - 22
IEEE Circuits and Systems Magazine - Q3 2021 - 23
IEEE Circuits and Systems Magazine - Q3 2021 - 24
IEEE Circuits and Systems Magazine - Q3 2021 - 25
IEEE Circuits and Systems Magazine - Q3 2021 - 26
IEEE Circuits and Systems Magazine - Q3 2021 - 27
IEEE Circuits and Systems Magazine - Q3 2021 - 28
IEEE Circuits and Systems Magazine - Q3 2021 - 29
IEEE Circuits and Systems Magazine - Q3 2021 - 30
IEEE Circuits and Systems Magazine - Q3 2021 - 31
IEEE Circuits and Systems Magazine - Q3 2021 - 32
IEEE Circuits and Systems Magazine - Q3 2021 - 33
IEEE Circuits and Systems Magazine - Q3 2021 - 34
IEEE Circuits and Systems Magazine - Q3 2021 - 35
IEEE Circuits and Systems Magazine - Q3 2021 - 36
IEEE Circuits and Systems Magazine - Q3 2021 - 37
IEEE Circuits and Systems Magazine - Q3 2021 - 38
IEEE Circuits and Systems Magazine - Q3 2021 - 39
IEEE Circuits and Systems Magazine - Q3 2021 - 40
IEEE Circuits and Systems Magazine - Q3 2021 - 41
IEEE Circuits and Systems Magazine - Q3 2021 - 42
IEEE Circuits and Systems Magazine - Q3 2021 - 43
IEEE Circuits and Systems Magazine - Q3 2021 - 44
IEEE Circuits and Systems Magazine - Q3 2021 - 45
IEEE Circuits and Systems Magazine - Q3 2021 - 46
IEEE Circuits and Systems Magazine - Q3 2021 - 47
IEEE Circuits and Systems Magazine - Q3 2021 - 48
IEEE Circuits and Systems Magazine - Q3 2021 - 49
IEEE Circuits and Systems Magazine - Q3 2021 - 50
IEEE Circuits and Systems Magazine - Q3 2021 - 51
IEEE Circuits and Systems Magazine - Q3 2021 - 52
IEEE Circuits and Systems Magazine - Q3 2021 - 53
IEEE Circuits and Systems Magazine - Q3 2021 - 54
IEEE Circuits and Systems Magazine - Q3 2021 - 55
IEEE Circuits and Systems Magazine - Q3 2021 - 56
IEEE Circuits and Systems Magazine - Q3 2021 - 57
IEEE Circuits and Systems Magazine - Q3 2021 - 58
IEEE Circuits and Systems Magazine - Q3 2021 - 59
IEEE Circuits and Systems Magazine - Q3 2021 - 60
IEEE Circuits and Systems Magazine - Q3 2021 - 61
IEEE Circuits and Systems Magazine - Q3 2021 - 62
IEEE Circuits and Systems Magazine - Q3 2021 - 63
IEEE Circuits and Systems Magazine - Q3 2021 - 64
IEEE Circuits and Systems Magazine - Q3 2021 - 65
IEEE Circuits and Systems Magazine - Q3 2021 - 66
IEEE Circuits and Systems Magazine - Q3 2021 - 67
IEEE Circuits and Systems Magazine - Q3 2021 - 68
IEEE Circuits and Systems Magazine - Q3 2021 - 69
IEEE Circuits and Systems Magazine - Q3 2021 - 70
IEEE Circuits and Systems Magazine - Q3 2021 - 71
IEEE Circuits and Systems Magazine - Q3 2021 - 72
IEEE Circuits and Systems Magazine - Q3 2021 - 73
IEEE Circuits and Systems Magazine - Q3 2021 - 74
IEEE Circuits and Systems Magazine - Q3 2021 - 75
IEEE Circuits and Systems Magazine - Q3 2021 - 76
IEEE Circuits and Systems Magazine - Q3 2021 - 77
IEEE Circuits and Systems Magazine - Q3 2021 - 78
IEEE Circuits and Systems Magazine - Q3 2021 - 79
IEEE Circuits and Systems Magazine - Q3 2021 - 80
IEEE Circuits and Systems Magazine - Q3 2021 - 81
IEEE Circuits and Systems Magazine - Q3 2021 - 82
IEEE Circuits and Systems Magazine - Q3 2021 - 83
IEEE Circuits and Systems Magazine - Q3 2021 - 84
IEEE Circuits and Systems Magazine - Q3 2021 - 85
IEEE Circuits and Systems Magazine - Q3 2021 - 86
IEEE Circuits and Systems Magazine - Q3 2021 - 87
IEEE Circuits and Systems Magazine - Q3 2021 - 88
IEEE Circuits and Systems Magazine - Q3 2021 - 89
IEEE Circuits and Systems Magazine - Q3 2021 - 90
IEEE Circuits and Systems Magazine - Q3 2021 - 91
IEEE Circuits and Systems Magazine - Q3 2021 - 92
IEEE Circuits and Systems Magazine - Q3 2021 - 93
IEEE Circuits and Systems Magazine - Q3 2021 - 94
IEEE Circuits and Systems Magazine - Q3 2021 - 95
IEEE Circuits and Systems Magazine - Q3 2021 - 96
IEEE Circuits and Systems Magazine - Q3 2021 - Cover3
IEEE Circuits and Systems Magazine - Q3 2021 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q1
https://www.nxtbookmedia.com