IEEE Circuits and Systems Magazine - Q3 2021 - 65

■ design of segmented (multistage) thermoelements
based on a compound of semiconductor materials
with a maximum thermoelectric efficiency at
different temperature ranges (it makes possible to
increase the efficiency of generators up to 10%);
■ combining TEG and solar cells into a single structure
(PV-TEG);
■ design of flexible TEGs based on organic materials.
As it was demonstrated by this paper, an international
cooperation based on IEEE CASS organizational
platform is an effective instrument to solve these tasks.
Acknowledgment
The research is partially funded by the Ministry of
Science and Higher Education of the Russian Federation
as part of World-class Research Center program:
Advanced Digital Technologies (contract No. 075-152020-934
dated 17.11.2020). The authors would like
to thank the University Administration for the given
opportunity.
Alexander S. Korotkov (M'91-SM'98)
received the Dipl. Eng. degree in electronics
in 1984, the Ph.D. degree in 1991,
and the Dr.Sc. (advanced) degree in
electrical engineering in 2000, all from
Peter the Great St. Petersburg Polytechnic
University, Russia. Dr. Korotkov is currently a professor
at the University. He is the author of 3 books and
more than 220 articles. His research interests are integrated
circuits theory, design, and computer simulations.
Dr. Korotkov is the chair of CASS chapter, IEEE, St. Petersburg
and the member of the CASCOM Tech. Comm., IEEE.
Vera V. Loboda (M'2012) received the
M.Sc. degree in electronics in 1997, the
Ph.D. degree in solid-state physics in
2000, all from Peter the Great St. Petersburg
Polytechnic University, Russia. Dr.
Loboda is currently an associate professor
at the University. She is the author of more than 50 articles.
Her research interests are theory, design and computer
simulations of energy harvesting and MEMS devices.
References
[1] T. J. Seebeck, " Ueber die magnetische Polarisation der Metalle und
Erze durch Temperatur‐Differenz, " Annalen der Physik, vol. 82, no. 1,
pp. 1-20, 1826.
[2] T. J. Seebeck, " Ueber die magnetische Polarisation der Metalle und
Erze durch Temperatur‐Differenz, " Annalen der Physik, vol. 82, no. 2,
pp. 133-160, 1826.
[3] T. J. Seebeck, " Ueber die magnetische Polarisation der Metalle und
Erze durch Temperatur‐Differenz, " Annalen der Physik, vol. 82, no. 3,
pp. 253-286, 1826.
[4] E. Altenkirch, " Ober den Nutzeffekt der Thermosaule, " Phys.
Zeitschrift, vol. 10, no. 16, pp. 560-568, 1909.
THIRD QUARTER 2021
[5] J. Yan, X. Liao, D. Yan, and Y. Chen, " Review of micro thermoelectric
generator, " J. Microelectromech. Syst., vol. 27, no. 1, pp. 1-18, Feb. 2018.
doi: 10.1109/JMEMS.2017.2782748.
[6] S. M. Pourkiaei et al., " Thermoelectric cooler and thermoelectric
generator devices: A review of present and potential applications, modeling
and materials, " Energy, vol. 186, no. 115849, pp. 1-17, 2019. doi:
10.1016/j.energy.2019.07.179.
[7] R. Rodriguez, M. Preindl, J. S. Cotton, and A. Emadi, " Review and
trends of thermoelectric generator heat recovery in automotive applications, "
IEEE Trans. Veh. Technol., vol. 68, no. 6, pp. 5366-5378, June 2019.
[8] A. F. Joffe, " The revival of thermoelectricity, " Sci. Amer., vol. 199,
no. 5, pp. 31-37, Nov. 1958. [Online]. Available: https://www.jstor.org/
stable/24944818. doi: 10.1038/scientificamerican1158-31.
[9] A. F. Ioffe, S. V. Airapetiants, A. V. Ioffe, N. V. Kolomoets, and L. S.
Stilbans, " On the efficiency increase in semiconductor thermocouples, "
Proc. Acad. Sci. USSR, vol. 106, no. 6, p. 981, 1956. [Online]. Available:
http://books.e-heritage.ru/book/10085432
[10] A. F. Ioffe, L. S. Stilbans, E. K. Iordanishvili, and T. S. Stavitskaya,
" Semiconductor thermoelements and thermoelectric cooling, " Phys.
Today, vol. 12, no. 5, p. 42. 1959. doi: 10.1063/1.3060810.
[11] A. F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling.
London: Infosearch Limited, 1957.
[12] A. F. Ioffe and L. S. Stilbans, " Physical problems of thermoelectricity, "
Rep. Progr. Phys., vol. 22, no. 1, pp. 167-203, 1959.
[13] G. J. Snyder and E. S. Toberer, " Complex thermoelectric materials, "
Nature Mater., vol.7, pp. 105-114, Feb. 2008. doi: 10.1038/nmat2090.
[14] B. Geppert, D. Groeneveld, V. Loboda, A. Korotkov, and A. Feldhoff,
" Finite-element simulations of a thermoelectric generator and their experimental
validation, " Energy Harvesting Syst., vol. 2, no. 1, pp. 95-104,
2015. doi: 10.1515/ehs-2015-0001.
[15] A. Korotkov, V. Loboda, A. Feldhoff, and D. Groeneveld, " Simulation
of Thermoelectric Generators and Its Results Experimental Verification, "
in Proc. 13th Int. Symp. Signals, Circuits, Syst. (ISSCS), Iasi, Romania,
July 13-14, 2017, p. 4.
[16] A. S. Korotkov, V. V. Loboda, S. B. Makarov, and A. Feldhoff, " Modeling
thermoelectric generators using the ANSYS software platform:
Methodology, practical applications, and prospects, " Russian Microelectron.,
vol. 46, no. 2, pp. 131-138, 2017. doi: 10.1134/S1063739717020056.
[17] A. S. Korotkov, V. V. Loboda, and A. Feldhoff, " Computer simulation
of thermoelectric generators, " Results of Joint Research Activity of Scientists
from Peter the Great Saint-Petersburg Polytechnic University and
Leibniz University of Hannover, 2019, pp.40-48. doi: 10.18720/SPBPU/2/
id19-140.
[18] R. Buslaev and V. Loboda, " Simulation of Uni-Leg thermoelectric
generator, " in Proc. IEEE Int. Conf. Electric. Eng. Photon., (EExPolytech),
2018, pp. 27-31.
[19] A. S. Korotkov and V. V. Loboda, " Simulation and design of thin-film
thermoelectric generators, " in Proc. Int. Symp. Fundamentals Electric.
Eng. (ISFEE), Bucharest, Romania, Nov. 1-3, 2018, p. 4.
[20] A. Korotkov, V. Loboda, E. Bakulin, and S. Dzyubanenko, " Fabrication
and testing of MEMS technology based thermoelectric generator, "
in Proc. 7th Electron. Syst.-Integr. Technol. Conf. (ESTC), Dresden, Sept.
18-21, 2018, p. 4.
[21] E. Bakulin, S. Dzyubanenko, S. Konakov, A. Korotkov, V. Loboda,
and A. Yugai, " Thermoelectric Peltier micromodules processed by
thin-film technology, " in Proc. J. Phys., Conf. Ser., 5th Int. School Conf.
Optoelectron., Photon., Eng. Nanostruct., Dec. 2018, vol. 1124, p. 081005.
[22] R. Buslaev, A. Galitskaya, and V. Loboda, " Simulation of flexible
thermoelectric generators based on Bi2Te3/Sb2Te3 synthesized by
electrochemical deposition method, " in Proc. IEEE Int. Conf. Electric.
Eng. Photon. (EExPolytech), 2019, pp. 54-57.
[23] A. S. Korotkov V. V. Loboda, S. V. Dzyubanenko, and E. M. Bakulin,
" Design of thin-film thermoelectric generator for low-power applications, "
Russian Microelectron., vol. 48, no. 5, pp. 326-334, 2019. doi:
10.1134/S1063739719040061.
[24] A. Tulaev, " Simulation of Si/Ge based thermoelectric generator, " in
Proc. IOP Conf. Ser., J. Phys., Int. Youth Conf. Electron., Telecomm. Inform.
Tech. (YETI), 2019, vol. 1326, p. 012034.
[25] V. Loboda, R. Buslaev, " Optimization calculation of thermoelement
linear dimensions for microthermoelectric generator, " in Proc. 18th IEEE
East-West Design Test Symp. (EWDTS), Varna, Bulgaria, Sept. 4-7, 2020.
[26] D. Beretta et al., " Thermoelectrics: From history, a window to the
future, " Mater. Sci. Eng. R, vol. 138, pp. 210-255, 2019.
IEEE CIRCUITS AND SYSTEMS MAGAZINE
65
https://www.jstor.org/ stable/24944818.doi:10.1038/scientificamerican1158-31 https://www.jstor.org/ stable/24944818.doi:10.1038/scientificamerican1158-31 http://books.e-heritage.ru/book/10085432

IEEE Circuits and Systems Magazine - Q3 2021

Table of Contents for the Digital Edition of IEEE Circuits and Systems Magazine - Q3 2021

Contents
IEEE Circuits and Systems Magazine - Q3 2021 - Cover1
IEEE Circuits and Systems Magazine - Q3 2021 - Cover2
IEEE Circuits and Systems Magazine - Q3 2021 - Contents
IEEE Circuits and Systems Magazine - Q3 2021 - 2
IEEE Circuits and Systems Magazine - Q3 2021 - 3
IEEE Circuits and Systems Magazine - Q3 2021 - 4
IEEE Circuits and Systems Magazine - Q3 2021 - 5
IEEE Circuits and Systems Magazine - Q3 2021 - 6
IEEE Circuits and Systems Magazine - Q3 2021 - 7
IEEE Circuits and Systems Magazine - Q3 2021 - 8
IEEE Circuits and Systems Magazine - Q3 2021 - 9
IEEE Circuits and Systems Magazine - Q3 2021 - 10
IEEE Circuits and Systems Magazine - Q3 2021 - 11
IEEE Circuits and Systems Magazine - Q3 2021 - 12
IEEE Circuits and Systems Magazine - Q3 2021 - 13
IEEE Circuits and Systems Magazine - Q3 2021 - 14
IEEE Circuits and Systems Magazine - Q3 2021 - 15
IEEE Circuits and Systems Magazine - Q3 2021 - 16
IEEE Circuits and Systems Magazine - Q3 2021 - 17
IEEE Circuits and Systems Magazine - Q3 2021 - 18
IEEE Circuits and Systems Magazine - Q3 2021 - 19
IEEE Circuits and Systems Magazine - Q3 2021 - 20
IEEE Circuits and Systems Magazine - Q3 2021 - 21
IEEE Circuits and Systems Magazine - Q3 2021 - 22
IEEE Circuits and Systems Magazine - Q3 2021 - 23
IEEE Circuits and Systems Magazine - Q3 2021 - 24
IEEE Circuits and Systems Magazine - Q3 2021 - 25
IEEE Circuits and Systems Magazine - Q3 2021 - 26
IEEE Circuits and Systems Magazine - Q3 2021 - 27
IEEE Circuits and Systems Magazine - Q3 2021 - 28
IEEE Circuits and Systems Magazine - Q3 2021 - 29
IEEE Circuits and Systems Magazine - Q3 2021 - 30
IEEE Circuits and Systems Magazine - Q3 2021 - 31
IEEE Circuits and Systems Magazine - Q3 2021 - 32
IEEE Circuits and Systems Magazine - Q3 2021 - 33
IEEE Circuits and Systems Magazine - Q3 2021 - 34
IEEE Circuits and Systems Magazine - Q3 2021 - 35
IEEE Circuits and Systems Magazine - Q3 2021 - 36
IEEE Circuits and Systems Magazine - Q3 2021 - 37
IEEE Circuits and Systems Magazine - Q3 2021 - 38
IEEE Circuits and Systems Magazine - Q3 2021 - 39
IEEE Circuits and Systems Magazine - Q3 2021 - 40
IEEE Circuits and Systems Magazine - Q3 2021 - 41
IEEE Circuits and Systems Magazine - Q3 2021 - 42
IEEE Circuits and Systems Magazine - Q3 2021 - 43
IEEE Circuits and Systems Magazine - Q3 2021 - 44
IEEE Circuits and Systems Magazine - Q3 2021 - 45
IEEE Circuits and Systems Magazine - Q3 2021 - 46
IEEE Circuits and Systems Magazine - Q3 2021 - 47
IEEE Circuits and Systems Magazine - Q3 2021 - 48
IEEE Circuits and Systems Magazine - Q3 2021 - 49
IEEE Circuits and Systems Magazine - Q3 2021 - 50
IEEE Circuits and Systems Magazine - Q3 2021 - 51
IEEE Circuits and Systems Magazine - Q3 2021 - 52
IEEE Circuits and Systems Magazine - Q3 2021 - 53
IEEE Circuits and Systems Magazine - Q3 2021 - 54
IEEE Circuits and Systems Magazine - Q3 2021 - 55
IEEE Circuits and Systems Magazine - Q3 2021 - 56
IEEE Circuits and Systems Magazine - Q3 2021 - 57
IEEE Circuits and Systems Magazine - Q3 2021 - 58
IEEE Circuits and Systems Magazine - Q3 2021 - 59
IEEE Circuits and Systems Magazine - Q3 2021 - 60
IEEE Circuits and Systems Magazine - Q3 2021 - 61
IEEE Circuits and Systems Magazine - Q3 2021 - 62
IEEE Circuits and Systems Magazine - Q3 2021 - 63
IEEE Circuits and Systems Magazine - Q3 2021 - 64
IEEE Circuits and Systems Magazine - Q3 2021 - 65
IEEE Circuits and Systems Magazine - Q3 2021 - 66
IEEE Circuits and Systems Magazine - Q3 2021 - 67
IEEE Circuits and Systems Magazine - Q3 2021 - 68
IEEE Circuits and Systems Magazine - Q3 2021 - 69
IEEE Circuits and Systems Magazine - Q3 2021 - 70
IEEE Circuits and Systems Magazine - Q3 2021 - 71
IEEE Circuits and Systems Magazine - Q3 2021 - 72
IEEE Circuits and Systems Magazine - Q3 2021 - 73
IEEE Circuits and Systems Magazine - Q3 2021 - 74
IEEE Circuits and Systems Magazine - Q3 2021 - 75
IEEE Circuits and Systems Magazine - Q3 2021 - 76
IEEE Circuits and Systems Magazine - Q3 2021 - 77
IEEE Circuits and Systems Magazine - Q3 2021 - 78
IEEE Circuits and Systems Magazine - Q3 2021 - 79
IEEE Circuits and Systems Magazine - Q3 2021 - 80
IEEE Circuits and Systems Magazine - Q3 2021 - 81
IEEE Circuits and Systems Magazine - Q3 2021 - 82
IEEE Circuits and Systems Magazine - Q3 2021 - 83
IEEE Circuits and Systems Magazine - Q3 2021 - 84
IEEE Circuits and Systems Magazine - Q3 2021 - 85
IEEE Circuits and Systems Magazine - Q3 2021 - 86
IEEE Circuits and Systems Magazine - Q3 2021 - 87
IEEE Circuits and Systems Magazine - Q3 2021 - 88
IEEE Circuits and Systems Magazine - Q3 2021 - 89
IEEE Circuits and Systems Magazine - Q3 2021 - 90
IEEE Circuits and Systems Magazine - Q3 2021 - 91
IEEE Circuits and Systems Magazine - Q3 2021 - 92
IEEE Circuits and Systems Magazine - Q3 2021 - 93
IEEE Circuits and Systems Magazine - Q3 2021 - 94
IEEE Circuits and Systems Magazine - Q3 2021 - 95
IEEE Circuits and Systems Magazine - Q3 2021 - 96
IEEE Circuits and Systems Magazine - Q3 2021 - Cover3
IEEE Circuits and Systems Magazine - Q3 2021 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q1
https://www.nxtbookmedia.com