IEEE Circuits and Systems Magazine - Q1 2022 - 36

[32] C. Wu et al., " A wideband 400 MHz-to-4 GHz direct RF-to-digital multimode
DR receiver, " IEEE J. Solid-State Circuits, vol. 49, pp. 1639-1652,
Jul. 2014.
[33] T. Yucek and H. Arslan, " A survey of spectrum sensing algorithms
for cognitive radio applications, " IEEE Commun. Surveys Tuts., vol. 11,
pp. 116-130, First Quarter 2009, doi: 10.1109/SURV.2009.090109.
[34] A. Tabassam et al., " Building cognitive radios in MATLAB Simulink-A
step towards future wireless technology, " in Proc. IEEE Wireless
Adv., Jun. 2011, pp. 15-20.
[35] N. D. Lane and P. Georgiev, " Can deep learning revolutionize mobile
sensing? " in Proc. Int. Workshop Mobile Comput. Syst. Appl., 2015, pp.
117-122, doi: 10.1145/2699343.2699349.
[36] M. Zhang et al., " Convolutional neural networks for automatic
cognitive radio waveform recognition, " IEEE Access, vol. 5, pp. 11,074-
11,081, Jul. 2017.
[37] Y. Molina-Tenorio et al., " Machine learning techniques applied to
multiband spectrum sensing in cognitive radios, " Sensors, vol. 19, no.
2715, pp. 1-22, 2019.
[38] R. Utrilla et al., " Gated recurrent unit neural networks for automatic
modulation classification with resource-constrained end-devices, "
IEEE Access, vol. 8, pp. 112,783-112,794, Jun. 2020.
[39] R. Zhou et al., " Deep learning for modulation recognition: A survey
with a demonstration, " IEEE Access, vol. 8, pp. 67,366-67,376, Apr. 2020.
[40] A. Emad et al., " Deep learning modulation recognition for RF spectrum
monitoring, " Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2021.
[41] A. Jain et al., " Artificial neural networks: A tutorial, " Computer, vol.
29, Mar. 1996, doi: 10.1109/2.485891.
[42] I. A. Basheer and M. Hajmeer, " Artificial neural networks: Fundamentals,
computing, design, and application, " Elsevier J. Microbiol.
Methods, vol. 43, pp. 3-31, 2000, doi: 10.1016/S0167-7012(00)00201-3.
[43] A. Tavanaei et al., " Deep learning in spiking neural networks, " Elsevier
Neural Netw., vol. 111, pp. 47-63, Mar. 2019, doi: 10.1016/j.neunet.
2018.12.002.
[44] C. Mead, Analog VLSI and Neural Systems. Addison-Wesley, 1989.
[45] E. Chicca et al., " Neuromorphic electronic circuits for building autonomous
cognitive systems, " Proc. IEEE, vol. 102, pp. 1367-1388, Sep.
2014, doi: 10.1109/JPROC.2014.2313954.
[46] P. A. Merolla et al., " A million spiking-neuron integrated circuit with
a scalable communication network and interface, " Science, vol. 345, pp.
668-673, Aug. 2014, doi: 10.1126/science.1254642.
[47] M. Davies et al., " Loihi: A neuromorphic manycore processor with
on-chip learning, " IEEE Micro, vol. 38, pp. 82-99, Jan. 2018, doi: 10.1109/
MM.2018.112130359.
[48] B. V. Benjamin et al., " Neurogrid: A mixed-analog-digital multichip
system for large-scale neural simulations, " Proc. IEEE, vol. 102, pp. 699-
716, May 2014, doi: 10.1109/JPROC.2014.2313565.
[49] J. Schemmel et al., " A wafer-scale neuromorphic hardware system
for large-scale neural modeling, " in Proc. IEEE Int. Symp. Circuits Syst.
(ISCAS), May 2010, pp. 1947-1950.
[50] L. Camunas-Mesa et al., " Neuromorphic spiking neural networks
and their memristor-CMOS hardware implementations, " Materials, vol.
12, p. 2745, Aug. 2019.
[51] L. O. Chua, " Memristor-The missing circuit element, " IEEE Trans. Circuit
Theory, vol. 54, pp. 507-519, Sep. 1971, doi: 10.1109/TCT.1971.1083337.
[52] D. B. Strukov et al., " The missing memristor found, " Nature, vol. 453,
pp. 80-83, May 2008, doi: 10.1038/nature06932.
[53] C. Mohan et al., " Neuromorphic low-power inference on memristive
crossbars With on-chip offset calibration, " IEEE Access, vol. 9, pp.
38,043-38,061, Jan. 2021.
[54] Q. Mao et al., " Deep learning for intelligent wireless networks: A
comprehensive survey, " IEEE Commun. Surveys Tuts., vol. 20, pp. 2595-
2621, Fourth Quarter 2018, doi: 10.1109/COMST.2018.2846401.
[55] C. Z. P. Patras and H. Haddadi, " Deep learning in mobile and wireless
networking: A survey, " IEEE Commun. Surveys Tuts., vol. 21, pp.
2224-2287, Third Quarter 2019, doi: 10.1109/COMST.2019.2904897.
[56] T. J. O'Shea et al., " Over-the-air deep learning based radio signal
classification, " IEEE J. Emerg. Sel. Topics Signal Process., vol. 12, pp.
168-179, Feb. 2018.
[57] Y. Xiao et al., " Toward self-learning edge intelligence in 6G, " IEEE Commun.
Mag., vol. 58, pp. 34-40, Dec. 2020, doi: 10.1109/MCOM.001.2000388.
[58] T. Zheng et al., " Enhancing RF sensing with deep learning: A layered
approach, " IEEE Commun. Mag., vol. 59, pp. 70-76, Feb. 2021, doi:
10.1109/MCOM.001.2000288.
36
IEEE CIRCUITS AND SYSTEMS MAGAZINE
[59] O. Naparstek and K. Cohen, " Deep multi-user reinforcement
learning for Distributed dynamic spectrum access, " IEEE Trans.
Wireless Commun., vol. 18, pp. 310-323, Jan. 2019, doi: 10.1109/TWC.
2018.2879433.
[60] S. Hua et al., " Deep learning with long short-term memory for time
series prediction, " IEEE Commun. Mag., vol. 57, pp. 114-119, Jun. 2019,
doi: 10.1109/MCOM.2019.1800155.
[61] V. ZĂșniga et al., " Using neural networks for optimum band selection
in cognitive-radio systems, " in Proc. IEEE Int. Conf. Electron., Circuits
Syst. (ICECS), Nov. 2020.
[62] V. Bhagavatula, " Exploring multimode cellular transceiver design:
A short tutorial, " IEEE Solid-State Circuits Mag., vol. 13, pp. 35-47, Winter
2021, doi: 10.1109/MSSC.2020.3036144.
[63] S. Pavan, R. Schreier, and G. C. Temes, Understanding Delta-Sigma
Data Converters, 2nd ed. Wiley-IEEE Press, 2017.
[64] J. M. de la Rosa, Sigma-Delta Converters: Practical Design Guide, 2nd
ed. Wiley-IEEE Press, 2018.
[65] G. Manganaro, Advanced Data Converters. Cambridge University
Press, 2012.
[66] M. Pelgrom, Analog-to-Digital Conversion, 3rd ed. Springer-Verlag,
2017.
[67] B. Murmann, " ADC performance survey 1997-2020 (ISSCC & VLSI Symposium), "
2020. [Online]. Available: http://web.stanford.edu/~murmann/
adcsurvey.html
[68] B. Murmann, " A/D converter trends: Power dissipation, scaling and
digitally assisted architectures, " in Proc. IEEE Custom Integrated Circuits
Conf., 2008, pp. 105-112.
[69] H. S. Lee and C. G. Sodini, " Analog-to-digital converters: Digitizing
the analog world, " Proc. IEEE, vol. 96, pp. 323-334, Feb. 2008, doi:
10.1109/JPROC.2007.911069.
[70] B. E. Jonsson, " An empirical approach to finding energy efficient
ADC architectures, " in Proc. Int. Workshop ADC Modeling, Testing Data
Converter Anal. Design IEEE ADC Forum, Jun. 2011.
[71] J. M. de la Rosa, R. Schreier, K.-P. Pun, and S. Pavan, " Next-generation
delta-sigma converters: Trends and perspectives, " IEEE J. Emerg.
Sel. Topics Circuits Syst., vol. 5, pp. 484-499, Dec. 2015, doi: 10.1109/
JETCAS.2015.2502164.
[72] H. Song et al., " A 6.5-8.1-GHz communication/ranging VWB transceiver
for secure wireless connectivity with enhanced bandwidth efficiency
and DR energy detection, " IEEE J. Solid-State Circuits, vol. 55,
pp. 219-232, Feb. 2020.
[73] H. Chae et al., " A 12mW low-power continuous-time bandpass DR
modulator with 58dB SNDR and 24MHz bandwidth at 200MHz IF, " in
Proc. IEEE ISSCC Dig. Tech. Papers, Feb. 2012, pp. 148-149.
[74] J. Harrison et al., " An LC bandpass DR ADC with 70dB SNDR over
20MHz bandwidth using CMOS DACs, " in Proc. IEEE ISSCC Dig. Tech.
Papers, Feb. 2012, pp. 146-147.
[75] E. Martens et al., " RF-to-baseband digitization in 40nm CMOS With
RF bandpass DR modulator and polyphase decimation filter, " IEEE J.
Solid-State Circuits, vol. 47, pp. 990-1002, Apr. 2012.
[76] A. Sayed et al., " A 1.5-to-3.0GHz tunable RF sigma-delta ADC with
a fixed set of coefficients and a programmable loop delay, " IEEE Trans.
Circuits Syst. II, Exp. Briefs, vol. 67, pp. 1559-1563, Sep. 2020, doi: 10.1109/
TCSII.2020.3013821.
[77] M. P. Flynn et al., " Continuous-time bandpass delta-sigma modulators
and bitstream processing, " in Proc. IEEE Custom Integrated Circuits
Conf., 2020, pp. 1-8.
[78] S. Kim et al., " A wide dynamic range multi-mode band-pass continuous-time
Delta-sigma modulator employing single-OPAMP resonator
with positive resistor-feedback, " IEEE Trans. Circuits Syst. II, Exp. Briefs,
vol. 67, pp. 235-239, Feb. 2020, doi: 10.1109/TCSII.2019.2913013.
[79] R. A. Kumar and N. Krishnapura, " Multi-channel analog-to-digital
conversion techniques using a continuous-time delta-sigma modulator
without reset, " IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67, pp.
3693-3703, Nov. 2020, doi: 10.1109/TCSI.2020.3013691.
[80] S. Manivannan and S. Pavan, " Improved continuous-time deltasigma
modulators with embedded active filtering, " IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 67, pp. 3778-3789, Nov. 2020, doi: 10.1109/
TCSI.2020.3013006.
[81] I. H. Jang et al., " A 4.2-mW 10-MHz BW 74.4-dB SNDR continuoustime
delta-sigma modulator with SAR-assisted digital-domain noise
coupling, " IEEE J. Solid-State Circuits, vol. 53, pp. 1139-1148, Apr. 2018,
doi: 10.1109/JSSC.2017.2778284.
FIRST QUARTER 2022
http://web.stanford.edu/~murmann/adcsurvey.hml http://web.stanford.edu/~murmann/adcsurvey.hml

IEEE Circuits and Systems Magazine - Q1 2022

Table of Contents for the Digital Edition of IEEE Circuits and Systems Magazine - Q1 2022

IEEE Circuits and Systems Magazine - Q1 2022 - Cover1
IEEE Circuits and Systems Magazine - Q1 2022 - Cover2
IEEE Circuits and Systems Magazine - Q1 2022 - 1
IEEE Circuits and Systems Magazine - Q1 2022 - 2
IEEE Circuits and Systems Magazine - Q1 2022 - 3
IEEE Circuits and Systems Magazine - Q1 2022 - 4
IEEE Circuits and Systems Magazine - Q1 2022 - 5
IEEE Circuits and Systems Magazine - Q1 2022 - 6
IEEE Circuits and Systems Magazine - Q1 2022 - 7
IEEE Circuits and Systems Magazine - Q1 2022 - 8
IEEE Circuits and Systems Magazine - Q1 2022 - 9
IEEE Circuits and Systems Magazine - Q1 2022 - 10
IEEE Circuits and Systems Magazine - Q1 2022 - 11
IEEE Circuits and Systems Magazine - Q1 2022 - 12
IEEE Circuits and Systems Magazine - Q1 2022 - 13
IEEE Circuits and Systems Magazine - Q1 2022 - 14
IEEE Circuits and Systems Magazine - Q1 2022 - 15
IEEE Circuits and Systems Magazine - Q1 2022 - 16
IEEE Circuits and Systems Magazine - Q1 2022 - 17
IEEE Circuits and Systems Magazine - Q1 2022 - 18
IEEE Circuits and Systems Magazine - Q1 2022 - 19
IEEE Circuits and Systems Magazine - Q1 2022 - 20
IEEE Circuits and Systems Magazine - Q1 2022 - 21
IEEE Circuits and Systems Magazine - Q1 2022 - 22
IEEE Circuits and Systems Magazine - Q1 2022 - 23
IEEE Circuits and Systems Magazine - Q1 2022 - 24
IEEE Circuits and Systems Magazine - Q1 2022 - 25
IEEE Circuits and Systems Magazine - Q1 2022 - 26
IEEE Circuits and Systems Magazine - Q1 2022 - 27
IEEE Circuits and Systems Magazine - Q1 2022 - 28
IEEE Circuits and Systems Magazine - Q1 2022 - 29
IEEE Circuits and Systems Magazine - Q1 2022 - 30
IEEE Circuits and Systems Magazine - Q1 2022 - 31
IEEE Circuits and Systems Magazine - Q1 2022 - 32
IEEE Circuits and Systems Magazine - Q1 2022 - 33
IEEE Circuits and Systems Magazine - Q1 2022 - 34
IEEE Circuits and Systems Magazine - Q1 2022 - 35
IEEE Circuits and Systems Magazine - Q1 2022 - 36
IEEE Circuits and Systems Magazine - Q1 2022 - 37
IEEE Circuits and Systems Magazine - Q1 2022 - 38
IEEE Circuits and Systems Magazine - Q1 2022 - 39
IEEE Circuits and Systems Magazine - Q1 2022 - 40
IEEE Circuits and Systems Magazine - Q1 2022 - 41
IEEE Circuits and Systems Magazine - Q1 2022 - 42
IEEE Circuits and Systems Magazine - Q1 2022 - 43
IEEE Circuits and Systems Magazine - Q1 2022 - 44
IEEE Circuits and Systems Magazine - Q1 2022 - 45
IEEE Circuits and Systems Magazine - Q1 2022 - 46
IEEE Circuits and Systems Magazine - Q1 2022 - 47
IEEE Circuits and Systems Magazine - Q1 2022 - 48
IEEE Circuits and Systems Magazine - Q1 2022 - 49
IEEE Circuits and Systems Magazine - Q1 2022 - 50
IEEE Circuits and Systems Magazine - Q1 2022 - 51
IEEE Circuits and Systems Magazine - Q1 2022 - 52
IEEE Circuits and Systems Magazine - Q1 2022 - 53
IEEE Circuits and Systems Magazine - Q1 2022 - 54
IEEE Circuits and Systems Magazine - Q1 2022 - 55
IEEE Circuits and Systems Magazine - Q1 2022 - 56
IEEE Circuits and Systems Magazine - Q1 2022 - 57
IEEE Circuits and Systems Magazine - Q1 2022 - 58
IEEE Circuits and Systems Magazine - Q1 2022 - 59
IEEE Circuits and Systems Magazine - Q1 2022 - 60
IEEE Circuits and Systems Magazine - Q1 2022 - 61
IEEE Circuits and Systems Magazine - Q1 2022 - 62
IEEE Circuits and Systems Magazine - Q1 2022 - 63
IEEE Circuits and Systems Magazine - Q1 2022 - 64
IEEE Circuits and Systems Magazine - Q1 2022 - 65
IEEE Circuits and Systems Magazine - Q1 2022 - 66
IEEE Circuits and Systems Magazine - Q1 2022 - 67
IEEE Circuits and Systems Magazine - Q1 2022 - 68
IEEE Circuits and Systems Magazine - Q1 2022 - 69
IEEE Circuits and Systems Magazine - Q1 2022 - 70
IEEE Circuits and Systems Magazine - Q1 2022 - 71
IEEE Circuits and Systems Magazine - Q1 2022 - 72
IEEE Circuits and Systems Magazine - Q1 2022 - 73
IEEE Circuits and Systems Magazine - Q1 2022 - 74
IEEE Circuits and Systems Magazine - Q1 2022 - 75
IEEE Circuits and Systems Magazine - Q1 2022 - 76
IEEE Circuits and Systems Magazine - Q1 2022 - 77
IEEE Circuits and Systems Magazine - Q1 2022 - 78
IEEE Circuits and Systems Magazine - Q1 2022 - 79
IEEE Circuits and Systems Magazine - Q1 2022 - 80
IEEE Circuits and Systems Magazine - Q1 2022 - 81
IEEE Circuits and Systems Magazine - Q1 2022 - 82
IEEE Circuits and Systems Magazine - Q1 2022 - 83
IEEE Circuits and Systems Magazine - Q1 2022 - 84
IEEE Circuits and Systems Magazine - Q1 2022 - Cover3
IEEE Circuits and Systems Magazine - Q1 2022 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q1
https://www.nxtbookmedia.com