IEEE Circuits and Systems Magazine - Q2 2022 - 30

[75] G. J. Goodhill, " Contributions of theoretical modeling to the understanding
of neural map development, " Neuron, vol. 56, pp. 301-311,
2007, doi: 10.1016/j.neuron.2007.09.027.
[76] K. Ahmed, A. Shrestha, Y. Wang, and Q. Qiu, " System design for
in-hardware STDP learning and spiking based probablistic inference, "
in Proc. IEEE Comput. Soc. Annu. Symp. VLSI (ISVLSI), 2016, pp. 272-277,
doi: 10.1109/ISVLSI.2016.91.
[77] A. Shrestha, K. Ahmed, Y. Wang, and Q. Qiu, " Stable spike-timing
dependent plasticity rule for multilayer unsupervised and supervised
learning, " in Proc. Int. Joint Conf. Neural Netw. (IJCNN), 2017, pp. 1999-
2006, doi: 10.1109/IJCNN.2017.7966096.
[78] J. A. Gottfried, " Central mechanisms of odour object perception, "
Nat. Rev. Neurosci., vol. 11, pp. 628-641, 2010, doi: 10.1038/nrn2883.
[79] D. A. Wilson and R. M. Sullivan, " Cortical processing of odor
objects, " Neuron, vol. 72, pp. 506-519, 2011, doi: 10.1016/j.neuron.
2011.10.027.
[80] B. A. Kaplan and A. Lansner, " A spiking neural network model
of self-organized pattern recognition in the early mammalian olfactory
system, " Front. Neural Circuits, vol. 8, p. 5, 2014, doi: 10.3389/
fncir.2014.00005.
[81] H.-Y. Hsieh and K.-T. Tang, " VLSI implementation of a bio-inspired
olfactory spiking neural network, " IEEE Trans. Neural Netw. Learn. Syst.,
vol. 23, pp. 1065-1073, 2012.
[82] B.-Z. Li, S. H. Pun, W. Feng, M. I. Vai, A. Klug, and T. C. Lei, " A spiking
neural network model mimicking the olfactory cortex for handwritten
digit recognition, " in Proc. 9th Int. IEEE/EMBS Conf. Neural Eng. (NER),
2019, pp. 1167-1170.
[83] B. Grothe, " New roles for synaptic inhibition in sound localization, "
Nat. Rev. Neurosci., vol. 4, pp. 540-550, 2003, doi: 10.1038/nrn1136.
[84] R. Shi and T. Horiuchi, " A VLSI model of the bat lateral superior
olive for azimuthal echolocation, " in Proc. IEEE Int. Symp. Circuits Syst.,
vol. 4, 2004, pp. IV-900.
[85] J. Wu, Y. Chua, M. Zhang, H. Li, and K. C. Tan, " A spiking neural network
framework for robust sound classification, " Front. Neurosci., vol.
12, p. 836, 2018, doi: 10.3389/fnins.2018.00836.
[86] B. Glackin, J. A. Wall, T. M. McGinnity, L. P. Maguire, and L. J. McDaid,
" A spiking neural network model of the medial superior olive
using spike timing dependent plasticity for sound localization, " Front.
Comput. Neurosci., vol. 4, p. 18, 2010, doi: 10.3389/fncom.2010.00018.
[87] C. Eliasmith, M. B. Westover, and C. H. Anderson, " A general framework
for neurobiological modeling: An application to the vestibular
system, " Neurocomputing, vol. 44, pp. 1071-1076, 2002, doi: 10.1016/
S0925-2312(02)00418-6.
[88] C. Eliasmith, " A unified approach to building and controlling spiking
attractor networks, " Neural Comput., vol. 17, pp. 1276-1314, 2005,
doi: 10.1162/0899766053630332.
[89] E. P. Frady and F. T. Sommer, " Robust computation with rhythmic
spike patterns, " Proc. National Acad. Sci., vol. 116, pp. 18,050-18,059,
2019.
[90] M. Giulioni, P. Camilleri, M. Mattia, V. Dante, J. Braun, and P. D.
Giudice, " Robust working memory in an asynchronously spiking neural
network realized with neuromorphic VLSI, " Front. Neurosci., vol. 5,
p. 149, 2012, doi: 10.3389/fnins.2011.00149.
[91] M. Baudry, " Synaptic plasticity and learning and memory: 15 Years
of progress, " Neurobiol. Learn. Memory, vol. 70, pp. 113-118, 1998, doi:
10.1006/nlme.1998.3842.
[92] A. Citri and R. C. Malenka, " Synaptic plasticity: Multiple forms,
functions, and mechanisms, " Neuropsychopharmacology, vol. 33, pp.
18-41, 2008, doi: 10.1038/sj.npp.1301559.
[93] P. J. Sjöström, G. G. Turrigiano, and S. B. Nelson, " Neocortical
LTD via coincident activation of presynaptic NMDA and cannabinoid
receptors, " Neuron, vol. 39, pp. 641-654, 2003, doi: 10.1016/S08966273(03)00476-8.
[94]
R. A. Nicoll and D. Schmitz, " Synaptic plasticity at hippocampal
mossy fibre synapses, " Nat. Rev. Neurosci., vol. 6, pp. 863-876, 2005,
doi: 10.1038/nrn1786.
[95] G.-q. Bi and M.-m. Poo, " Synaptic modifications in cultured hippocampal
neurons: Dependence on spike timing, synaptic strength,
and postsynaptic cell type, " J. Neurosci., vol. 18, pp. 10,464-10,472,
1998.
[96] H. Markram, J. Lübke, M. Frotscher, and B. Sakmann, " Regulation
of synaptic efficacy by coincidence of postsynaptic APs and
EPSPs, " Science, vol. 275, pp. 213-215, 1997, doi: 10.1126/science.275.
5297.213.
30
IEEE CIRCUITS AND SYSTEMS MAGAZINE
[97] S. Song, K. D. Miller, and L. F. Abbott, " Competitive Hebbian learning
through spike-timing-dependent synaptic plasticity, " Nat. Neurosci.,
vol. 3, pp. 919-926, 2000, doi: 10.1038/78829.
[98] Q. Yu, H. Li, and K. C. Tan, " Spike timing or rate? Neurons learn to
make decisions for both through threshold-driven plasticity, " IEEE Trans.
Cybern., vol. 49, pp. 2178-2189, 2018, doi: 10.1109/TCYB.2018.2821692.
[99] R. V. Florian, " Tempotron-like learning with resume, " in Proc. Int.
Conf. Artif. Neural Netw., 2008, pp. 368-375.
[100] A. Mohemmed, S. Schliebs, S. Matsuda, and N. Kasabov, " Span:
Spike pattern association neuron for learning spatio-temporal spike
patterns, " Int. J. Neural Syst., vol. 22, p. 1250012, 2012.
[101] R. Echeveste and C. Gros, " Two-trace model for spike-timing-dependent
synaptic plasticity, " Neural Comput., vol. 27, pp. 672-698, 2015,
doi: 10.1162/NECO_a_00707.
[102] R. Kempter, W. Gerstner, and J. L. Van Hemmen, " Hebbian learning
and spiking neurons, " Phys. Rev. E, vol. 59, no. 4, p. 4498, 1999, doi:
10.1103/PhysRevE.59.4498.
[103] J. Rubin, D. D. Lee, and H. Sompolinsky, " Equilibrium properties of
temporally asymmetric Hebbian plasticity, " Phys. Rev. Lett., vol. 86, no.
2, p. 364, 2001, doi: 10.1103/PhysRevLett.86.364.
[104] F. Ponulak and A. Kasin´ski, " Supervised learning in spiking neural
networks with resume: Sequence learning, classification, and spike
shifting, " Neural Comput., vol. 22, no. 2, pp. 467-510, 2010, doi: 10.1162/
neco.2009.11-08-901.
[105] M. Davies et al., " Loihi: A neuromorphic manycore processor
with on-chip learning, " IEEE Micro, vol. 38, pp. 82-99, 2018, doi: 10.1109/
MM.2018.112130359.
[106] E. O. Neftci, C. Augustine, S. Paul, and G. Detorakis, " Eventdriven
random back-propagation: Enabling neuromorphic deep
learning machines, " Front. Neurosci., vol. 11, p. 324, 2017, doi: 10.3389/
fnins.2017.00324.
[107] A. Tavanaei and A. Maida, " BP-STDP: Approximating backpropagation
using spike timing dependent plasticity, " Neurocomputing, vol.
330, pp. 39-47, 2019, doi: 10.1016/j.neucom.2018.11.014.
[108] A. Shrestha, H. Fang, Q. Wu, and Q. Qiu, " Approximating backpropagation
for a biologically plausible local learning rule in spiking
neural networks, " in Proc. Int. Conf. Neuromorphic Syst., 2019, pp. 1-8.
[109] S. M. Bohte, J. N. Kok, and J. A. La Poutré, " Spikeprop: Backpropagation
for networks of spiking neurons, " in Proc. ESANN, 2000, vol. 48,
pp. 419-424.
[110] Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, " Spatio-temporal backpropagation
for training high-performance spiking neural networks, "
Front. Neurosci., vol. 12, p. 331, 2018, doi: 10.3389/fnins.2018.00331.
[111] A. Shrestha, H. Fang, D. P. Rider, Z. Mei, and Q. Qiu, " In-hardware
learning of multilayer spiking neural networks on a neuromorphic processor, "
in Proc. Des. Automat. Conf. (DAC), 2021.
[112] S. A. Aamir et al., " An accelerated LIF neuronal network array for
a large-scale mixed-signal neuromorphic architecture, " IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 65, pp. 4299-4312, 2018, doi: 10.1109/
TCSI.2018.2840718.
[113] B. V. Benjamin et al., " Neurogrid: A mixed-analog-digital multichip
system for large-scale neural simulations, " Proc. IEEE, vol. 102, pp. 699-
716, 2014, doi: 10.1109/JPROC.2014.2313565.
[114] P. A. Merolla et al., " A million spiking-neuron integrated circuit
with a scalable communication network and interface, " Science, vol.
345, pp. 668-673, 2014, doi: 10.1126/science.1254642.
[115] N. Qiao et al., " A reconfigurable on-line learning spiking neuromorphic
processor comprising 256 neurons and 128k synapses, " Front.
Neurosci., vol. 9, p. 141, 2015, doi: 10.3389/fnins.2015.00141.
[116] S. Yang et al., " Real-time neuromorphic system for large-scale
conductance-based spiking neural networks, " IEEE Trans. Cybern., vol.
49, pp. 2490-2503, 2018, doi: 10.1109/TCYB.2018.2823730.
[117] A. S. Cassidy et al., " Cognitive computing building block: A versatile
and efficient digital neuron model for neurosynaptic cores, " in Proc.
Int. Joint Conf. Neural Netw. (IJCNN), 2013, pp. 1-10.
[118] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, " The spinnaker
project, " Proc. IEEE, vol. 102, pp. 652-665, 2014, doi: 10.1109/
JPROC.2014.2304638.
[119] R. Araújo, N. Waniek, and J. Conradt, " Development of a dynamically
extendable spinnaker chip computing module, " in Proc. Int. Conf.
Artif. Neural Netw., 2014, pp. 821-828.
[120] P. U. Diehl and M. Cook, " Efficient implementation of STDP rules
on spinnaker neuromorphic hardware, " in Proc. Int. Joint Conf. Neural
Netw. (IJCNN), 2014, pp. 4288-4295.
SECOND QUARTER 2022

IEEE Circuits and Systems Magazine - Q2 2022

Table of Contents for the Digital Edition of IEEE Circuits and Systems Magazine - Q2 2022

IEEE Circuits and Systems Magazine - Q2 2022 - Cover1
IEEE Circuits and Systems Magazine - Q2 2022 - Cover2
IEEE Circuits and Systems Magazine - Q2 2022 - 1
IEEE Circuits and Systems Magazine - Q2 2022 - 2
IEEE Circuits and Systems Magazine - Q2 2022 - 3
IEEE Circuits and Systems Magazine - Q2 2022 - 4
IEEE Circuits and Systems Magazine - Q2 2022 - 5
IEEE Circuits and Systems Magazine - Q2 2022 - 6
IEEE Circuits and Systems Magazine - Q2 2022 - 7
IEEE Circuits and Systems Magazine - Q2 2022 - 8
IEEE Circuits and Systems Magazine - Q2 2022 - 9
IEEE Circuits and Systems Magazine - Q2 2022 - 10
IEEE Circuits and Systems Magazine - Q2 2022 - 11
IEEE Circuits and Systems Magazine - Q2 2022 - 12
IEEE Circuits and Systems Magazine - Q2 2022 - 13
IEEE Circuits and Systems Magazine - Q2 2022 - 14
IEEE Circuits and Systems Magazine - Q2 2022 - 15
IEEE Circuits and Systems Magazine - Q2 2022 - 16
IEEE Circuits and Systems Magazine - Q2 2022 - 17
IEEE Circuits and Systems Magazine - Q2 2022 - 18
IEEE Circuits and Systems Magazine - Q2 2022 - 19
IEEE Circuits and Systems Magazine - Q2 2022 - 20
IEEE Circuits and Systems Magazine - Q2 2022 - 21
IEEE Circuits and Systems Magazine - Q2 2022 - 22
IEEE Circuits and Systems Magazine - Q2 2022 - 23
IEEE Circuits and Systems Magazine - Q2 2022 - 24
IEEE Circuits and Systems Magazine - Q2 2022 - 25
IEEE Circuits and Systems Magazine - Q2 2022 - 26
IEEE Circuits and Systems Magazine - Q2 2022 - 27
IEEE Circuits and Systems Magazine - Q2 2022 - 28
IEEE Circuits and Systems Magazine - Q2 2022 - 29
IEEE Circuits and Systems Magazine - Q2 2022 - 30
IEEE Circuits and Systems Magazine - Q2 2022 - 31
IEEE Circuits and Systems Magazine - Q2 2022 - 32
IEEE Circuits and Systems Magazine - Q2 2022 - 33
IEEE Circuits and Systems Magazine - Q2 2022 - 34
IEEE Circuits and Systems Magazine - Q2 2022 - 35
IEEE Circuits and Systems Magazine - Q2 2022 - 36
IEEE Circuits and Systems Magazine - Q2 2022 - 37
IEEE Circuits and Systems Magazine - Q2 2022 - 38
IEEE Circuits and Systems Magazine - Q2 2022 - 39
IEEE Circuits and Systems Magazine - Q2 2022 - 40
IEEE Circuits and Systems Magazine - Q2 2022 - 41
IEEE Circuits and Systems Magazine - Q2 2022 - 42
IEEE Circuits and Systems Magazine - Q2 2022 - 43
IEEE Circuits and Systems Magazine - Q2 2022 - 44
IEEE Circuits and Systems Magazine - Q2 2022 - 45
IEEE Circuits and Systems Magazine - Q2 2022 - 46
IEEE Circuits and Systems Magazine - Q2 2022 - 47
IEEE Circuits and Systems Magazine - Q2 2022 - 48
IEEE Circuits and Systems Magazine - Q2 2022 - 49
IEEE Circuits and Systems Magazine - Q2 2022 - 50
IEEE Circuits and Systems Magazine - Q2 2022 - 51
IEEE Circuits and Systems Magazine - Q2 2022 - 52
IEEE Circuits and Systems Magazine - Q2 2022 - 53
IEEE Circuits and Systems Magazine - Q2 2022 - 54
IEEE Circuits and Systems Magazine - Q2 2022 - 55
IEEE Circuits and Systems Magazine - Q2 2022 - 56
IEEE Circuits and Systems Magazine - Q2 2022 - 57
IEEE Circuits and Systems Magazine - Q2 2022 - 58
IEEE Circuits and Systems Magazine - Q2 2022 - 59
IEEE Circuits and Systems Magazine - Q2 2022 - 60
IEEE Circuits and Systems Magazine - Q2 2022 - 61
IEEE Circuits and Systems Magazine - Q2 2022 - 62
IEEE Circuits and Systems Magazine - Q2 2022 - 63
IEEE Circuits and Systems Magazine - Q2 2022 - 64
IEEE Circuits and Systems Magazine - Q2 2022 - 65
IEEE Circuits and Systems Magazine - Q2 2022 - 66
IEEE Circuits and Systems Magazine - Q2 2022 - 67
IEEE Circuits and Systems Magazine - Q2 2022 - 68
IEEE Circuits and Systems Magazine - Q2 2022 - Cover3
IEEE Circuits and Systems Magazine - Q2 2022 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q1
https://www.nxtbookmedia.com