IEEE Circuits and Systems Magazine - Q2 2022 - 31

[121] S. Furber and A. Brown, " Biologically-inspired massively-parallel
architectures-computing beyond a million processors, " in Proc. 9th Int.
Conf. Appl. Concurrency Syst. Des., 2009, pp. 3-12.
[122] S. B. Furber et al., " Overview of the spinnaker system architecture, "
IEEE Trans. Comput., vol. 62, pp. 2454-2467, 2012, doi: 10.1109/
TC.2012.142.
[123] S. Furber, " To build a brain, " IEEE Spectrum, vol. 49, pp. 44-49,
2012, doi: 10.1109/MSPEC.2012.6247562.
[124] X. Jin, S. B. Furber, and J. V. Woods, " Efficient modelling of spiking
neural networks on a scalable chip multiprocessor, " in Proc. IEEE Int.
Joint Conf. Neural Netw. (IEEE World Congr. Comput. Intell.), 2008, pp.
2812-2819.
[125] J. C. Knight, P. J. Tully, B. A. Kaplan, A. Lansner, and S. B. Furber,
" Large-scale simulations of plastic neural networks on neuromorphic
hardware, " Front. Neuroanat., vol. 10, p. 37, 2016, doi: 10.3389/
fnana.2016.00037.
[126] J. C. Knight and S. B. Furber, " Synapse-centric mapping of cortical
models to the SpiNNaker neuromorphic architecture, " Front. Neurosci.,
vol. 10, p. 420, 2016, doi: 10.3389/fnins.2016.00420.
[127] X. Lagorce et al., " Breaking the millisecond barrier on SpiNNaker:
Implementing asynchronous event-based plastic models with microsecond
resolution, " Front. Neurosci., vol. 9, p. 206, 2015, doi: 10.3389/
fnins.2015.00206.
[128] E. Painkras et al., " Spinnaker: A 1-w 18-core system-on-chip for
massively-parallel neural network simulation, " IEEE J. Solid-State Circuits,
vol. 48, pp. 1943-1953, 2013, doi: 10.1109/JSSC.2013.2259038.
[129] E. Painkras et al., " Spinnaker: A multi-core system-on-chip for
massively-parallel neural net simulation, " in Proc. IEEE Custom Integr.
Circuits Conf., 2012, pp. 1-4.
[130] L. A. Plana et al., " SpiNNaker: Design and implementation of a
GALS multicore system-on-chip, " ACM J. Emerg. Technol. Comput. Syst.
(JETC), vol. 7, pp. 1-18, 2011, doi: 10.1145/2043643.2043647.
[131] A. D. Rast, X. Jin, F. Galluppi, L. A. Plana, C. Patterson, and S. Furber,
" Scalable event-driven native parallel processing: the SpiNNaker
neuromimetic system, " in Proc. 7th ACM Int. Conf. Comput. Front., 2010,
pp. 21-30.
[132] T. Sharp, L. A. Plana, F. Galluppi, and S. Furber, " Event-driven simulation
of arbitrary spiking neural networks on Spinnaker, " in Proc. Int.
Conf. Neural Inf. Process., 2011, pp. 424-430.
[133] E. Stromatias, D. Neil, F. Galluppi, M. Pfeiffer, S.-C. Liu, and S. Furber,
" Scalable energy-efficient, low-latency implementations of trained
spiking deep belief networks on spinnaker, " in Proc. Int. Joint Conf. Neural
Netw. (IJCNN), 2015, pp. 1-8.
[134] F. Akopyan et al., " Truenorth: Design and tool flow of a 65 mw
1 million neuron programmable neurosynaptic chip, " IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 34, pp. 1537-1557, 2015, doi:
10.1109/TCAD.2015.2474396.
[135] J. V. Arthur et al., " Building block of a programmable neuromorphic
substrate: A digital neurosynaptic core, " in Proc. Int. Joint Conf.
Neural Netw. (IJCNN), 2012, pp. 1-8.
[136] A. S. Cassidy et al., " Real-time scalable cortical computing at
46 giga-synaptic OPS/watt with˜ 100× speedup in time-to-solution and˜
100,000× reduction in energy-to-solution, " in Proc. Int. Conf. High Perform.
Comput., Netw., Storage Anal. (SC14), 2014, pp. 27-38.
[137] N. Imam, F. Akopyan, J. Arthur, P. Merolla, R. Manohar, and D. S.
Modha, " A digital neurosynaptic core using event-driven QDI circuits, "
in Proc. IEEE 18th Int. Symp. Asynchronous Circuits Syst., 2012, pp. 25-32.
[138] P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar, and D. S.
Modha, " A digital neurosynaptic core using embedded crossbar memory
with 45pj per spike in 45nm, " in Proc. IEEE Custom Integr. Circuits Conf.
(CICC), 2011, pp. 1-4.
[139] J.-s. Seo et al., " A 45nm CMOS neuromorphic chip with a scalable
architecture for learning in networks of spiking neurons, " in Proc. IEEE
Custom Integr. Circuits Conf. (CICC), 2011, pp. 1-4.
[140] A. Banerjee, S. Kar, S. Roy, A. Bhaduri, and A. Basu, " A currentmode
spiking neural classifier with lumped dendritic nonlinearity, " in
Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), 2015, pp. 714-717.
[141] M. Ambroise, T. Levi, Y. Bornat, and S. Saighi, " Biorealistic spiking
neural network on FPGA, " in Proc. 47th Annu. Conf. Inf. Sci. Syst. (CISS),
2013, pp. 1-6.
[142] M. Hu, H. Li, Y. Chen, Q. Wu, G. S. Rose, and R. W. Linderman,
" Memristor crossbar-based neuromorphic computing system: A case
study, " IEEE Trans. Neural Netw. Learn. Syst., vol. 25, pp. 1864-1878, 2014,
doi: 10.1109/TNNLS.2013.2296777.
SECOND QUARTER 2022
[143] M. E. Dean and C. Daffron, " A VLSI design for neuromorphic computing, "
in Proc. IEEE Comput. Soc. Annu. Symp. VLSI (ISVLSI), 2016, pp.
87-92.
[144] J. K. Kim, P. Knag, T. Chen, and Z. Zhang, " A 640m pixel/s 3.65 mw
sparse event-driven neuromorphic object recognition processor with
on-chip learning, " in Proc. Symp. VLSI Circuits (VLSI Circuits), 2015, pp.
C50-C51.
[145] A. Nere, U. Olcese, D. Balduzzi, and G. Tononi, " A neuromorphic architecture
for object recognition and motion anticipation using burstSTDP, "
PloS One, vol. 7, 2012, doi: 10.1371/journal.pone.0036958.
[146] A. Nere, A. Hashmi, M. Lipasti, and G. Tononi, " Bridging the semantic
gap: Emulating biological neuronal behaviors with simple digital
neurons, " in Proc. IEEE 19th Int. Symp. High Perform. Comput. Arch.
(HPCA), 2013, pp. 472-483.
[147] J.-s. Seo and M. Seok, " Digital CMOS neuromorphic processor
design featuring unsupervised online learning, " in Proc. IFIP/IEEE Int.
Conf. Very Large Scale Integr. (VLSI-SoC), 2015, pp. 49-51, doi: 10.1109/
VLSI-SoC.2015.7314390.
[148] J. Shen et al., " Darwin: A neuromorphic hardware co-processor
based on spiking neural networks, " Sci. China Inf. Sci., vol. 59, pp. 1-5,
2016, doi: 10.1007/s11432-015-5511-7.
[149] R. M. Wang, T. J. Hamilton, J. C. Tapson, and A. van Schaik, " A neuromorphic
implementation of multiple spike-timing synaptic plasticity
rules for large-scale neural networks, " Front. Neurosci., vol. 9, p. 180,
2015, doi: 10.3389/fnins.2015.00180.
[150] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay,
" Neurocube: A programmable digital neuromorphic architecture with
high-density 3D memory, " ACM SIGARCH Comput. Arch. News, vol. 44,
pp. 380-392, 2016, doi: 10.1145/3007787.3001178.
[151] E. O. Neftci, B. U. Pedroni, S. Joshi, M. Al-Shedivat, and G. Cauwenberghs,
" Stochastic synapses enable efficient brain-inspired learning machines, "
Front. Neurosci., vol. 10, p. 241, 2016, doi: 10.3389/fnins.2016.00241.
[152] E. Neftci, " Stochastic neuromorphic learning machines for weakly
labeled data, " in Proc. IEEE 34th Int. Conf. Comput. Des. (ICCD), 2016, pp.
670-673, doi: 10.1109/ICCD.2016.7753355.
[153] P. Knag, C. Liu, and Z. Zhang, " A 1.40 mm 2 141mw 898GOPS sparse
neuromorphic processor in 40nm CMOS, " in Proc. IEEE Symp. VLSI Circuits
(VLSI-Circuits), 2016, pp. 1-2.
[154] B. U. Pedroni et al., " Mapping generative models onto a network of
digital spiking neurons, " IEEE Trans. Biomed. Circuits Syst., vol. 10, pp.
837-854, 2016, doi: 10.1109/TBCAS.2016.2539352.
[155] S. Das et al., " Gibbs sampling with low-power spiking digital neurons, "
in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), 2015, pp. 2704-2707.
[156] L. Wan, Y. Luo, S. Song, J. Harkin, and J. Liu, " Efficient neuron architecture
for FPGA-based spiking neural networks, " in Proc. 27th Irish
Signals Syst. Conf. (ISSC), 2016, pp. 1-6.
[157] H. Fang, A. Shrestha, D. Ma, and Q. Qiu, " Scalable NoC-based neuromorphic
hardware learning and inference, " in Proc. Int. Joint Conf.
Neural Netw. (IJCNN), 2018, pp. 1-8.
[158] D. Neil and S.-C. Liu, " Minitaur, an event-driven FPGA-based spiking
network accelerator, " IEEE Trans. Very Large Scale Integr. VLSI Syst.,
vol. 22, pp. 2621-2628, 2014, doi: 10.1109/TVLSI.2013.2294916.
[159] A. S. Cassidy, J. Georgiou, and A. G. Andreou, " Design of silicon
brains in the nano-CMOS era: Spiking neurons, learning synapses and
neural architecture optimization, " Neural Netw., vol. 45, pp. 4-26, 2013,
doi: 10.1016/j.neunet.2013.05.011.
[160] K. Cheung, S. R. Schultz, and W. Luk, " Neuroflow: A general
purpose spiking neural network simulation platform using customizable
processors, " Front. Neurosci., vol. 9, p. 516, 2016, doi: 10.3389/
fnins.2015.00516.
[161] A. Sripad et al., " Snava-A real-time multi-FPGA multi-model spiking
neural network simulation architecture, " Neural Netw., vol. 97, pp.
28-45, 2018, doi: 10.1016/j.neunet.2017.09.011.
[162] S. Yang, Q. Wu, and R. Li, " A case for spiking neural network simulation
based on configurable multiple-FPGA systems, " Cogn. Neurodyn.,
vol. 5, p. 301, 2011, doi: 10.1007/s11571-011-9170-0.
[163] M. Heidarpur, A. Ahmadi, M. Ahmadi, and M. R. Azghadi, " CORDICSNN:
On-FPGA STDP learning with Izhikevich neurons, " IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 66, pp. 2651-2661, 2019, doi: 10.1109/
TCSI.2019.2899356.
[164] Y. Liu, S. S. Yenamachintala, and P. Li, " Energy-efficient FPGA spiking
neural accelerators with supervised and unsupervised spike-timing-dependent-plasticity, "
ACM J. Emerg. Technol. Comput. Syst. (JETC),
vol. 15, pp. 1-19, 2019, doi: 10.1145/3313866.
IEEE CIRCUITS AND SYSTEMS MAGAZINE
31

IEEE Circuits and Systems Magazine - Q2 2022

Table of Contents for the Digital Edition of IEEE Circuits and Systems Magazine - Q2 2022

IEEE Circuits and Systems Magazine - Q2 2022 - Cover1
IEEE Circuits and Systems Magazine - Q2 2022 - Cover2
IEEE Circuits and Systems Magazine - Q2 2022 - 1
IEEE Circuits and Systems Magazine - Q2 2022 - 2
IEEE Circuits and Systems Magazine - Q2 2022 - 3
IEEE Circuits and Systems Magazine - Q2 2022 - 4
IEEE Circuits and Systems Magazine - Q2 2022 - 5
IEEE Circuits and Systems Magazine - Q2 2022 - 6
IEEE Circuits and Systems Magazine - Q2 2022 - 7
IEEE Circuits and Systems Magazine - Q2 2022 - 8
IEEE Circuits and Systems Magazine - Q2 2022 - 9
IEEE Circuits and Systems Magazine - Q2 2022 - 10
IEEE Circuits and Systems Magazine - Q2 2022 - 11
IEEE Circuits and Systems Magazine - Q2 2022 - 12
IEEE Circuits and Systems Magazine - Q2 2022 - 13
IEEE Circuits and Systems Magazine - Q2 2022 - 14
IEEE Circuits and Systems Magazine - Q2 2022 - 15
IEEE Circuits and Systems Magazine - Q2 2022 - 16
IEEE Circuits and Systems Magazine - Q2 2022 - 17
IEEE Circuits and Systems Magazine - Q2 2022 - 18
IEEE Circuits and Systems Magazine - Q2 2022 - 19
IEEE Circuits and Systems Magazine - Q2 2022 - 20
IEEE Circuits and Systems Magazine - Q2 2022 - 21
IEEE Circuits and Systems Magazine - Q2 2022 - 22
IEEE Circuits and Systems Magazine - Q2 2022 - 23
IEEE Circuits and Systems Magazine - Q2 2022 - 24
IEEE Circuits and Systems Magazine - Q2 2022 - 25
IEEE Circuits and Systems Magazine - Q2 2022 - 26
IEEE Circuits and Systems Magazine - Q2 2022 - 27
IEEE Circuits and Systems Magazine - Q2 2022 - 28
IEEE Circuits and Systems Magazine - Q2 2022 - 29
IEEE Circuits and Systems Magazine - Q2 2022 - 30
IEEE Circuits and Systems Magazine - Q2 2022 - 31
IEEE Circuits and Systems Magazine - Q2 2022 - 32
IEEE Circuits and Systems Magazine - Q2 2022 - 33
IEEE Circuits and Systems Magazine - Q2 2022 - 34
IEEE Circuits and Systems Magazine - Q2 2022 - 35
IEEE Circuits and Systems Magazine - Q2 2022 - 36
IEEE Circuits and Systems Magazine - Q2 2022 - 37
IEEE Circuits and Systems Magazine - Q2 2022 - 38
IEEE Circuits and Systems Magazine - Q2 2022 - 39
IEEE Circuits and Systems Magazine - Q2 2022 - 40
IEEE Circuits and Systems Magazine - Q2 2022 - 41
IEEE Circuits and Systems Magazine - Q2 2022 - 42
IEEE Circuits and Systems Magazine - Q2 2022 - 43
IEEE Circuits and Systems Magazine - Q2 2022 - 44
IEEE Circuits and Systems Magazine - Q2 2022 - 45
IEEE Circuits and Systems Magazine - Q2 2022 - 46
IEEE Circuits and Systems Magazine - Q2 2022 - 47
IEEE Circuits and Systems Magazine - Q2 2022 - 48
IEEE Circuits and Systems Magazine - Q2 2022 - 49
IEEE Circuits and Systems Magazine - Q2 2022 - 50
IEEE Circuits and Systems Magazine - Q2 2022 - 51
IEEE Circuits and Systems Magazine - Q2 2022 - 52
IEEE Circuits and Systems Magazine - Q2 2022 - 53
IEEE Circuits and Systems Magazine - Q2 2022 - 54
IEEE Circuits and Systems Magazine - Q2 2022 - 55
IEEE Circuits and Systems Magazine - Q2 2022 - 56
IEEE Circuits and Systems Magazine - Q2 2022 - 57
IEEE Circuits and Systems Magazine - Q2 2022 - 58
IEEE Circuits and Systems Magazine - Q2 2022 - 59
IEEE Circuits and Systems Magazine - Q2 2022 - 60
IEEE Circuits and Systems Magazine - Q2 2022 - 61
IEEE Circuits and Systems Magazine - Q2 2022 - 62
IEEE Circuits and Systems Magazine - Q2 2022 - 63
IEEE Circuits and Systems Magazine - Q2 2022 - 64
IEEE Circuits and Systems Magazine - Q2 2022 - 65
IEEE Circuits and Systems Magazine - Q2 2022 - 66
IEEE Circuits and Systems Magazine - Q2 2022 - 67
IEEE Circuits and Systems Magazine - Q2 2022 - 68
IEEE Circuits and Systems Magazine - Q2 2022 - Cover3
IEEE Circuits and Systems Magazine - Q2 2022 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q1
https://www.nxtbookmedia.com