IEEE Circuits and Systems Magazine - Q2 2022 - 34

[249] Y. Ji et al., " NEUTRAMS: Neural network transformation and codesign
under neuromorphic hardware constraints, " in Proc. 49th Annu.
IEEE/ACM Int. Symp. Microarchit. (MICRO), 2016, pp. 1-13, doi: 10.1109/
MICRO.2016.7783724.
[250] G. Urgese, F. Barchi, E. Macii, and A. Acquaviva, " Optimizing
network traffic for spiking neural network simulations on densely interconnected
many-core neuromorphic platforms, " IEEE Trans. Emerg.
Topics Comput., vol. 6, pp. 317-329, 2016, doi: 10.1109/TETC.2016.
2579605.
[251] Q. X. Wu, X. Liao, X. Huang, R. Cai, J. Cai, and J. Liu, " Development
of FPGA toolbox for implementation of spiking neural networks, "
in Proc. 5th Int. Conf. Commun. Syst. Netw. Technol., 2015, pp. 806-810.
[252] A. D. Brown et al., " SpiNNaker-Programming model, " IEEE Trans.
Comput., vol. 64, pp. 1769-1782, 2014.
[253] A. Disney, J. Reynolds, C. D. Schuman, A. Klibisz, A. Young, and J.
S. Plank, " Danna: A neuromorphic software ecosystem, " Biol. Inspired
Cogn. Archit., vol. 17, pp. 49-56, 2016, doi: 10.1016/j.bica.2016.07.007.
[254] N. Kasabov et al., " Evolving spatio-temporal data machines based
on the NeuCube neuromorphic framework: Design methodology and selected
applications, " Neural Netw., vol. 78, pp. 1-14, 2016, doi: 10.1016/j.
neunet.2015.09.011.
[255] N. Scott, N. Kasabov, and G. Indiveri, " Neucube neuromorphic
framework for spatio-temporal brain data and its python implementation, "
in Proc. Int. Conf. Neural Inf. Process., 2013, pp. 78-84.
[256] Y. Ji, Y.-H. Zhang, and W.-M. Zheng, " Modelling spiking neural
network from the architecture evaluation perspective, " J. Comput. Sci.
Technol., vol. 31, pp. 50-59, 2016, doi: 10.1007/s11390-016-1611-0.
[257] M. Plagge, C. D. Carothers, E. Gonsiorowski, and N. Mcglohon,
" Nemo: A massively parallel discrete-event simulation model for
neuromorphic architectures, " ACM Trans. Modeling Comput. Simul.
(TOMACS), vol. 28, pp. 1-25, 2018, doi: 10.1145/3186317.
[258] R. Preissl et al., " Compass: A scalable simulator for an architecture
for cognitive computing, " in Proc. Int. Conf. High Perform. Comput.,
Netw., Storage Anal., 2012, pp. 1-11.
[259] L. Xia et al.,
" MNSIM: Simulation platform for memristorbased
neuromorphic computing system, " IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst., vol. 37, pp. 1009-1022, 2017, doi: 10.1109/
TCAD.2017.2729466.
[260] Q. Chen, R. Luley, Q. Wu, M. Bishop, R. W. Linderman, and Q. Qiu,
" AnRAD: A neuromorphic anomaly detection framework for massive
concurrent data streams, " IEEE Trans. Neural Netw. Learn. Syst., vol. 29,
no. 5, pp. 1622-1636, 2017, doi: 10.1109/TNNLS.2017.2676110.
[261] G. Haessig, A. Cassidy, R. Alvarez, R. Benosman, and G. Orchard,
" Spiking optical flow for event-based sensors using IBM's truenorth
neurosynaptic system, " IEEE Trans. Biomed. Circuits Syst., vol. 12, no. 4,
pp. 860-870, 2018, doi: 10.1109/TBCAS.2018.2834558.
[262] M. Z. Alom, B. Van Essen, A. T. Moody, D. P. Widemann, and
T. M. Taha, " Quadratic unconstrained binary optimization (QUBO) on
neuromorphic computing system, " in Proc. Int. Joint Conf. Neural Netw.
(IJCNN), 2017, pp. 3922-3929, doi: 10.1109/IJCNN.2017.7966350.
[263] E. Nurse, B. S. Mashford, A. J. Yepes, I. Kiral-Kornek, S. Harrer,
and D. R. Freestone, " Decoding EEG and LFP signals using deep learning:
Heading truenorth, " in Proc. ACM Int. Conf. Comput. Front., 2016,
pp. 259-266.
[264] S. Moran, B. Gaonkar, W. Whitehead, A. Wolk, L. Macyszyn, and S.
S. Iyer, " Deep learning for medical image segmentation-using the IBM
truenorth neurosynaptic system, " in Medical Imaging 2018: Imaging Informatics
for Healthcare, Research, and Applications, vol. 10579. International
Society for Optics and Photonics, 2018, p. 1,057,915.
[265] J.-P. Pfister and W. Gerstner, " Triplets of spikes in a model of spike
timing-dependent plasticity, " J. Neurosci., vol. 26, no. 38, pp. 9673-9682,
2006, doi: 10.1523/JNEUROSCI.1425-06.2006.
[266] J. Gjorgjieva, C. Clopath, J. Audet, and J.-P. Pfister, " A triplet spiketiming-dependent
plasticity model generalizes the Bienenstock-Cooper-Munro
rule to higher-order spatiotemporal correlations, " Proc. National
Acad. Sci., vol. 108, no. 48, pp. 19,383-19,388, 2011, doi: 10.1073/pnas.
1105933108.
[267] R. V. Florian, " Reinforcement learning through modulation of
spike-timing-dependent synaptic plasticity, " Neural Comput., vol. 19, no.
6, pp. 1468-1502, 2007, doi: 10.1162/neco.2007.19.6.1468.
[268] C. Yakopcic, N. Rahman, T. Atahary, T. M. Taha, and S. Douglass,
" Solving constraint satisfaction problems using the loihi spiking neuromorphic
processor, " in Proc. Des., Automat. Test Eur. Conf. Exhib.
(DATE), 2020, pp. 1079-1084, doi: 10.23919/DATE48585.2020.9116227.
34
IEEE CIRCUITS AND SYSTEMS MAGAZINE
[269] E. P. Frady et al., " Neuromorphic nearest neighbor search using
Intel's Pohoiki springs, " in Proc. Neuro-inspired Comput. Elements Workshop,
2020, pp. 1-10, doi: 10.1145/3381755.3398695.
[270] W. Severa, R. Lehoucq, O. Parekh, and J. B. Aimone, " Spiking neural
algorithms for markov process random walk, " in Proc. Int. Joint Conf.
Neural Netw. (IJCNN), 2018, pp. 1-8, doi: 10.1109/IJCNN.2018.8489628.
[271] N. Imam and T. A. Cleland, " Rapid online learning and robust recall
in a neuromorphic olfactory circuit, " Nat. Mach. Intell., vol. 2, no. 3,
pp. 181-191, 2020, doi: 10.1038/s42256-020-0159-4.
[272] M. Evanusa et al., " Event-based attention and tracking on neuromorphic
hardware, " in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recogn. Workshops, 2019, doi: 10.1109/AICAS48895.2020.9073789.
[273] C. D. Schuman, J. P. Mitchell, R. M. Patton, T. E. Potok, and J. S.
Plank, " Evolutionary optimization for neuromorphic systems, " in Proc.
Neuro-Inspired Comput. Elements Workshop, 2020, pp. 1-9.
[274] D. Rasmussen, " NengoDL: Combining deep learning and neuromorphic
modelling methods, " Neuroinformatics, vol. 17, no. 4, pp. 611-
628, 2019, doi: 10.1007/s12021-019-09424-z.
[275] T. DeWolf, P. Jaworski, and C. Eliasmith, " Nengo and low-power AI
hardware for robust, embedded neurorobotics, " Front. Neurorobot., vol.
14, 2020, doi: 10.3389/fnbot.2020.568359.
[276] K. Amunts, C. Ebell, J. Muller, M. Telefont, A. Knoll, and T. Lippert,
" The human brain project: creating a European research infrastructure
to decode the human brain, " Neuron, vol. 92, pp. 574-581, 2016, doi:
10.1016/j.neuron.2016.10.046.
[277] E. Dangelo et al., " The human brain project: High performance
computing for brain cells HW/SW simulation and understanding, " in
Proc. Euromicro Conf. Digital Syst. Des., 2015, pp. 740-747.
[278] R. Brette and W. Gerstner, " Adaptive exponential integrate-andfire
model as an effective description of neuronal activity, " J. Neurophysiol.,
vol. 94, pp. 3637-3642, 2005, doi: 10.1152/jn.00686.2005.
[279] S. Millner, " Development of a multi-compartment neuron model
emulation, " Ph.D. dissertation, 2012.
[280] J. Schemmel, D. Briiderle, A. Griibl, M. Hock, K. Meier, and S. Millner,
" A wafer-scale neuromorphic hardware system for large-scale neural
modeling, " in Proc. IEEE Int. Symp. Circuits Syst., 2010, pp. 1947-1950.
[281] E. Müller, S. Schmitt, B. Vogginger, D. Lester, and T. P. A. P. Davison,
" HBP neuromorphic computing platform guidebook, " Jan. 2020.
https://electronicvisions.github.io/hbp-sp9-guidebook/
[282] G. Indiveri, " Neuromorphic VLSI models of selective attention:
From single chip vision sensors to multi-chip systems, " Sensors, vol. 8,
pp. 5352-5375, 2008, doi: 10.3390/s8095352.
[283] J. Schemmel, J. Fieres, and K. Meier, " Wafer-scale integration
of analog neural networks, " in Proc. IEEE Int. Joint Conf. Neural Netw.
(IEEE World Congr. Comput. Intell.), 2008, pp. 431-438, doi: 10.1109/
IJCNN.2008.4633828.
[284] D. Brüderle, E. Müller, A. P. Davison, E. Muller, J. Schemmel, and
K. Meier, " Establishing a novel modeling tool: a python-based interface
for a neuromorphic hardware system, " Front. Neuroinf., vol. 3, p. 17, 2009.
[285] C. S. Thakur et al., " Large-scale neuromorphic spiking array processors:
A quest to mimic the brain, " Front. Neurosci., vol. 12, p. 891,
2018, doi: 10.3389/fnins.2018.00891.
[286] S. Schmitt et al., " Neuromorphic hardware in the loop: Training a
deep spiking network on the brainscales wafer-scale system, " in Proc.
Int. Joint Conf. Neural Netw. (IJCNN), 2017, pp. 2227-2234.
[287] L. A. Plana et al., " A gals infrastructure for a massively parallel
multiprocessor, " IEEE Des. Test Comput., vol. 24, pp. 454-463, 2007, doi:
10.1109/MDT.2007.149.
[288] S. J. van Albada et al., " Performance comparison of the digital neuromorphic
hardware Spinnaker and the neural network simulation software
nest for a full-scale cortical microcircuit model, " Front. Neurosci.,
vol. 12, p. 291, 2018, doi: 10.3389/fnins.2018.00291.
[289] E. I. Guerra-Hernandez, A. Espinal, P. Batres-Mendoza, C. H. Garcia-Capulin,
R. D. J. Romero-Troncoso, and H. Rostro-Gonzalez, " A FPGAbased
neuromorphic locomotion system for multi-legged robots, " IEEE
Access, vol. 5, pp. 8301-8312, 2017, doi: 10.1109/ACCESS.2017.2696985.
[290] O. Rhodes et al., " sPyNNaker: a software package for running
Pynn simulations on SpiNNaker, " Front. Neurosci., vol. 12, p. 816, 2018,
doi: 10.3389/fnins.2018.00816.
[291] A. P. Davison et al., " PyNN: a common interface for neuronal network
simulators, " Front. Neuroinformat., vol. 2, p. 11, 2009.
[292] T. Bekolay et al., " Nengo: A Python tool for building large-scale
functional brain models, " Front. Neuroinformat., vol. 7, p. 48, 2014, doi:
10.3389/fninf.2013.00048.
SECOND QUARTER 2022
https://electronicvisions.github.io/hbp-sp9-guidebook/

IEEE Circuits and Systems Magazine - Q2 2022

Table of Contents for the Digital Edition of IEEE Circuits and Systems Magazine - Q2 2022

IEEE Circuits and Systems Magazine - Q2 2022 - Cover1
IEEE Circuits and Systems Magazine - Q2 2022 - Cover2
IEEE Circuits and Systems Magazine - Q2 2022 - 1
IEEE Circuits and Systems Magazine - Q2 2022 - 2
IEEE Circuits and Systems Magazine - Q2 2022 - 3
IEEE Circuits and Systems Magazine - Q2 2022 - 4
IEEE Circuits and Systems Magazine - Q2 2022 - 5
IEEE Circuits and Systems Magazine - Q2 2022 - 6
IEEE Circuits and Systems Magazine - Q2 2022 - 7
IEEE Circuits and Systems Magazine - Q2 2022 - 8
IEEE Circuits and Systems Magazine - Q2 2022 - 9
IEEE Circuits and Systems Magazine - Q2 2022 - 10
IEEE Circuits and Systems Magazine - Q2 2022 - 11
IEEE Circuits and Systems Magazine - Q2 2022 - 12
IEEE Circuits and Systems Magazine - Q2 2022 - 13
IEEE Circuits and Systems Magazine - Q2 2022 - 14
IEEE Circuits and Systems Magazine - Q2 2022 - 15
IEEE Circuits and Systems Magazine - Q2 2022 - 16
IEEE Circuits and Systems Magazine - Q2 2022 - 17
IEEE Circuits and Systems Magazine - Q2 2022 - 18
IEEE Circuits and Systems Magazine - Q2 2022 - 19
IEEE Circuits and Systems Magazine - Q2 2022 - 20
IEEE Circuits and Systems Magazine - Q2 2022 - 21
IEEE Circuits and Systems Magazine - Q2 2022 - 22
IEEE Circuits and Systems Magazine - Q2 2022 - 23
IEEE Circuits and Systems Magazine - Q2 2022 - 24
IEEE Circuits and Systems Magazine - Q2 2022 - 25
IEEE Circuits and Systems Magazine - Q2 2022 - 26
IEEE Circuits and Systems Magazine - Q2 2022 - 27
IEEE Circuits and Systems Magazine - Q2 2022 - 28
IEEE Circuits and Systems Magazine - Q2 2022 - 29
IEEE Circuits and Systems Magazine - Q2 2022 - 30
IEEE Circuits and Systems Magazine - Q2 2022 - 31
IEEE Circuits and Systems Magazine - Q2 2022 - 32
IEEE Circuits and Systems Magazine - Q2 2022 - 33
IEEE Circuits and Systems Magazine - Q2 2022 - 34
IEEE Circuits and Systems Magazine - Q2 2022 - 35
IEEE Circuits and Systems Magazine - Q2 2022 - 36
IEEE Circuits and Systems Magazine - Q2 2022 - 37
IEEE Circuits and Systems Magazine - Q2 2022 - 38
IEEE Circuits and Systems Magazine - Q2 2022 - 39
IEEE Circuits and Systems Magazine - Q2 2022 - 40
IEEE Circuits and Systems Magazine - Q2 2022 - 41
IEEE Circuits and Systems Magazine - Q2 2022 - 42
IEEE Circuits and Systems Magazine - Q2 2022 - 43
IEEE Circuits and Systems Magazine - Q2 2022 - 44
IEEE Circuits and Systems Magazine - Q2 2022 - 45
IEEE Circuits and Systems Magazine - Q2 2022 - 46
IEEE Circuits and Systems Magazine - Q2 2022 - 47
IEEE Circuits and Systems Magazine - Q2 2022 - 48
IEEE Circuits and Systems Magazine - Q2 2022 - 49
IEEE Circuits and Systems Magazine - Q2 2022 - 50
IEEE Circuits and Systems Magazine - Q2 2022 - 51
IEEE Circuits and Systems Magazine - Q2 2022 - 52
IEEE Circuits and Systems Magazine - Q2 2022 - 53
IEEE Circuits and Systems Magazine - Q2 2022 - 54
IEEE Circuits and Systems Magazine - Q2 2022 - 55
IEEE Circuits and Systems Magazine - Q2 2022 - 56
IEEE Circuits and Systems Magazine - Q2 2022 - 57
IEEE Circuits and Systems Magazine - Q2 2022 - 58
IEEE Circuits and Systems Magazine - Q2 2022 - 59
IEEE Circuits and Systems Magazine - Q2 2022 - 60
IEEE Circuits and Systems Magazine - Q2 2022 - 61
IEEE Circuits and Systems Magazine - Q2 2022 - 62
IEEE Circuits and Systems Magazine - Q2 2022 - 63
IEEE Circuits and Systems Magazine - Q2 2022 - 64
IEEE Circuits and Systems Magazine - Q2 2022 - 65
IEEE Circuits and Systems Magazine - Q2 2022 - 66
IEEE Circuits and Systems Magazine - Q2 2022 - 67
IEEE Circuits and Systems Magazine - Q2 2022 - 68
IEEE Circuits and Systems Magazine - Q2 2022 - Cover3
IEEE Circuits and Systems Magazine - Q2 2022 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q1
https://www.nxtbookmedia.com