IEEE Circuits and Systems Magazine - Q2 2022 - 35
[293] M.-O. Gewaltig and M. Diesmann, " Nest (Neural Simulation Tool), "
Scholarpedia, vol. 2, p. 1430, 2007, doi: 10.4249/scholarpedia.1430.
[294] M. Stimberg, R. Brette, and D. F. M. Goodman, " Brian 2, an intuitive
and efficient neural simulator, " Elife, vol. 8, 2019, doi: 10.7554/
eLife.47314.
[295] M. Stimberg, D. F. M. Goodman, V. Benichoux, and R. Brette,
" Equation-oriented specification of neural models for simulations, "
Front. Neuroinformat., vol. 8, p. 6, 2014, doi: 10.3389/fninf.2014.
00006.
[296] J. Pei et al., " Towards artificial general intelligence with hybrid
Tianjic chip architecture, " Nature, vol. 572, no. 7767, pp. 106-111,
2019.
[297] Y. Mi, C. C. A. Fung, K. Y. M. Wong, and S. Wu, " Spike frequency
adaptation implements anticipative tracking in continuous attractor
neural networks, " in Advances in Neural Information Processing Systems,
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Q. Weinberger,
Eds., vol. 27. Curran Associates, Inc., 2014, pp. 505-513.
[298] S. Furber, " Large-scale neuromorphic computing systems, " J. Neural
Eng., vol. 13, no. 5, p. 051001, 2016.
[299] L. Chua, " Memristor-the missing circuit element, " IEEE Trans. Circuit
Theory, vol. 18, pp. 507-519, 1971, doi: 10.1109/TCT.1971.1083337.
[300] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams,
" The missing memristor found, " Nature, vol. 453, pp. 80-83, 2008, doi:
10.1038/nature06932.
[301] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and
W. Lu, " Nanoscale memristor device as synapse in neuromorphic systems, "
Nano Lett., vol. 10, pp. 1297-1301, 2010, doi: 10.1021/nl904092h.
[302] R. Islam et al., " Device and materials requirements for neuromorphic
computing, " J. Phys. D, vol. 52, p. 113001, 2019.
[303] P.-Y. Chen, " Design of resistive synaptic devices and array architectures
for neuromorphic computing, " Ph.D. dissertation, Arizona
State Univ., 2018.
[304] P.-Y. Chen, J.-s. Seo, Y. Cao, and S. Yu, " Compact oscillation neuron
exploiting metal-insulator-transition for neuromorphic computing, "
in Proc. IEEE/ACM Int. Conf. Comput.-Aided Des. (ICCAD), 2016, pp. 1-6.
[305] Z. Wang et al., " Memristors with diffusive dynamics as synaptic
emulators for neuromorphic computing, " Nat. Mater., vol. 16, pp. 101-
108, 2017, doi: 10.1038/nmat4756.
[306] Z. Wang et al., " Fully memristive neural networks for pattern classification
with unsupervised learning, " Nat. Electron., vol. 1, pp. 137-
145, 2018, doi: 10.1038/s41928-018-0023-2.
[307] Z. Q. Wang, H. Y. Xu, X. H. Li, H. Yu, Y. C. Liu, and X. J. Zhu, " Synaptic
learning and memory functions achieved using oxygen ion migration/diffusion
in an amorphous ingazno memristor, " Adv. Functional
Mater., vol. 22, pp. 2759-2765, 2012, doi: 10.1002/adfm.201103148.
[308] M. R. Azghadi, B. Linares-Barranco, D. Abbott, and P. H. W. Leong,
" A hybrid CMOS-memristor neuromorphic synapse, " IEEE Trans.
Biomed. Circuits Syst., vol. 11, pp. 434-445, 2016, doi: 10.1109/TBCAS.2016.2618351.
[309]
G. C. Adam, B. D. Hoskins, M. Prezioso, F. Merrikh-Bayat,
B. Chakrabarti, and D. B. Strukov, " 3-d memristor crossbars for
analog
and neuromorphic
computing
applications, " IEEE Trans.
Electron Devices, vol. 64, pp. 312-318, 2017, doi: 10.1109/TED.2016.
2630925.
[310] M. Hu et al., " Memristor-based analog computation and neural
network classification with a dot product engine, " Adv. Mater., vol. 30,
p. 1705914, 2018.
[311] Y. Zhang et al., " Brain-inspired computing with memristors: Challenges
in devices, circuits, and systems, " Appl. Phys. Rev., vol. 7, p. 11308,
2020.
[312] B. Yan, A. M. Mahmoud, J. J. Yang, Q. Wu, Y. Chen, and H. H. Li,
" A neuromorphic ASIC design using one-selector-one-memristor crossbar, "
in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), 2016, pp. 1390-1393.
[313] L. Chen, J. Li, Y. Chen, Q. Deng, J. Shen, X. Liang, and L. Jiang,
" Accelerator-friendly neural-network training: Learning variations and
defects in RRAM crossbar, " in Proc. Des., Automat. Test Eur. Conf. Exhib.
(DATE), 2017, pp. 19-24.
[314] M. Hu, H. Li, Q. Wu, G. S. Rose, and Y. Chen, " Memristor crossbar
based hardware realization of BSB recall function, " in Proc. Int. Joint
Conf. Neural Netw. (IJCNN), 2012, pp. 1-7.
[315] M. Hu et al., " Dot-product engine for neuromorphic computing:
programming 1T1M crossbar to accelerate matrix-vector multiplication, "
in Proc. 53rd Annu. Des. Automat. Conf., 2016, p. 19.
SECOND QUARTER 2022
[316] F. Alibart, E. Zamanidoost, and D. B. Strukov, " Pattern classification
by memristive crossbar circuits using ex situ and in situ training, "
Nat. Commun., vol. 4, pp. 1-7, 2013, doi: 10.1038/ncomms3072.
[317] T. Serrano-Gotarredona, T. Masquelier, T. Prodromakis, G. Indiveri,
and B. Linares-Barranco, " STDP and STDP variations with memristors
for spiking neuromorphic learning systems, " Front. Neurosci., vol.
7, p. 2, 2013, doi: 10.3389/fnins.2013.00002.
[318] M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam, K. K.
Likharev, and D. B. Strukov, " Training and operation of an integrated
neuromorphic network based on metal-oxide memristors, " Nature, vol.
521, pp. 61-64, 2015, doi: 10.1038/nature14441.
[319] X. Zhu, C. Du, Y. Jeong, and W. D. Lu, " Emulation of synaptic metaplasticity
in memristors, " Nanoscale, vol. 9, pp. 45-51, 2017, doi: 10.1039/
C6NR08024C.
[320] C. Zamarreño-Ramos, L. A. Camuñas-Mesa, J. A. Pérez-Carrasco,
T. Masquelier, T. Serrano-Gotarredona, and B. Linares-Barranco, " On
spike-timing-dependent-plasticity, memristive devices, and building a
self-learning visual cortex. " Front. Neurosci., vol. 5, pp. 26-26, 2011, doi:
10.3389/fnins.2011.00026.
[321] D. Negrov et al., " An approximate backpropagation learning rule
for memristor based neural networks using synaptic plasticity, " Neurocomputing,
vol. 237, pp. 193-199, 2017, doi: 10.1016/j.neucom.2016.10.061.
[322] R. Guo et al., " Control of synaptic plasticity learning of ferroelectric
tunnel memristor by nanoscale interface engineering, " ACS Appl.
Mater. Interf., vol. 10, pp. 12,862-12,869, 2018.
[323] Z. I. Mannan, S. P. Adhikari, C. Yang, R. K. Budhathoki, H. Kim, and
L. Chua, " Memristive imitation of synaptic transmission and plasticity, "
IEEE Trans. Neural Netw., vol. 30, pp. 3458-3470, 2019, doi: 10.1109/
TNNLS.2019.2892385.
[324] R. Yang et al., " Synaptic suppression Triplet-STDP learning rule
realized in second-order memristors, " Adv. Functional Mater., vol. 28,
p. 1704455, 2018.
[325] Z. Cheng, C. Ríos, W. H. P. Pernice, C. D. Wright, and H. Bhaskaran,
" On-chip photonic synapse, " Sci. Adv., vol. 3, 2017, doi: 10.1126/
sciadv.1700160.
[326] J. Feldmann, N. Youngblood, C. D. Wright, H. Bhaskaran, and
W. H. P. Pernice, " All-optical spiking neurosynaptic networks with selflearning
capabilities, " Nature, vol. 569, pp. 208-214, 2019, doi: 10.1038/
s41586-019-1157-8.
[327] A. Hurtado and J. Javaloyes, " Controllable spiking patterns in
long-wavelength vertical cavity surface emitting lasers for neuromorphic
photonics systems, " Appl. Phys. Lett., vol. 107, p. 241103, 2015.
[328] B. Gholipour, P. Bastock, C. Craig, K. Khan, D. Hewak, and C. Soci,
" Amorphous metal-sulphide microfibers enable photonic synapses for
brain-like computing, " Adv. Optical Mater., vol. 3, pp. 635-641, 2015, doi:
10.1002/adom.201400472.
[329] A. N. Tait et al., " Silicon photonic modulator neuron, " Phys. Rev.
Appl., vol. 11, p. 64043, 2019.
[330] A. N. Tait et al., " Neuromorphic photonic networks using silicon
photonic weight banks, " Sci. Rep., vol. 7, p. 1-10, 2017, doi: 10.1038/
s41598-017-07754-z.
[331] A. N. Tait, M. A. Nahmias, Y. Tian, B. J. Shastri, and P. R. Prucnal,
" Photonic neuromorphic signal processing and computing, " in Nanophotonic
Information Physics. Springer-Verlag, 2014, pp. 183-222.
[332] M. Lee et al., " Brain-inspired photonic neuromorphic devices using
photodynamic amorphous oxide semiconductors and their persistent
photoconductivity, " Adv. Mater., vol. 29, p. 1700951, 2017.
[333] Y. Wang et al., " Photonic synapses based on inorganic perovskite
quantum dots for neuromorphic computing, " Adv. Mater., vol. 30, p.
1802883, 2018.
[334] A. Katumba et al., " Neuromorphic computing based on silicon
photonics and reservoir computing, " IEEE J. Sel. Topics Quantum Electron.,
vol. 24, pp. 1-10, 2018, doi: 10.1109/JSTQE.2018.2821843.
[335] M. Miscuglio et al., " All-optical nonlinear activation function for
photonic neural networks [Invited], " Optic. Mater. Express, vol. 8, pp.
3851-3863, 2018, doi: 10.1364/OME.8.003851.
[336] I. Chakraborty, G. Saha, A. Sengupta, and K. Roy, " Toward fast
neural computing using all-photonic phase change spiking neurons, "
Sci. Rep., vol. 8, p. 12980, 2018.
[337] H.-T. Peng, M. A. Nahmias, T. de Lima, Ferreira, A. N. Tait, and
B. J. Shastri, " Neuromorphic photonic integrated circuits, " IEEE J.
Sel. Topics Quantum Electron., vol. 24, pp. 1-15, 2018, doi: 10.1109/
JSTQE.2018.2840448.
IEEE CIRCUITS AND SYSTEMS MAGAZINE
35
IEEE Circuits and Systems Magazine - Q2 2022
Table of Contents for the Digital Edition of IEEE Circuits and Systems Magazine - Q2 2022
IEEE Circuits and Systems Magazine - Q2 2022 - Cover1
IEEE Circuits and Systems Magazine - Q2 2022 - Cover2
IEEE Circuits and Systems Magazine - Q2 2022 - 1
IEEE Circuits and Systems Magazine - Q2 2022 - 2
IEEE Circuits and Systems Magazine - Q2 2022 - 3
IEEE Circuits and Systems Magazine - Q2 2022 - 4
IEEE Circuits and Systems Magazine - Q2 2022 - 5
IEEE Circuits and Systems Magazine - Q2 2022 - 6
IEEE Circuits and Systems Magazine - Q2 2022 - 7
IEEE Circuits and Systems Magazine - Q2 2022 - 8
IEEE Circuits and Systems Magazine - Q2 2022 - 9
IEEE Circuits and Systems Magazine - Q2 2022 - 10
IEEE Circuits and Systems Magazine - Q2 2022 - 11
IEEE Circuits and Systems Magazine - Q2 2022 - 12
IEEE Circuits and Systems Magazine - Q2 2022 - 13
IEEE Circuits and Systems Magazine - Q2 2022 - 14
IEEE Circuits and Systems Magazine - Q2 2022 - 15
IEEE Circuits and Systems Magazine - Q2 2022 - 16
IEEE Circuits and Systems Magazine - Q2 2022 - 17
IEEE Circuits and Systems Magazine - Q2 2022 - 18
IEEE Circuits and Systems Magazine - Q2 2022 - 19
IEEE Circuits and Systems Magazine - Q2 2022 - 20
IEEE Circuits and Systems Magazine - Q2 2022 - 21
IEEE Circuits and Systems Magazine - Q2 2022 - 22
IEEE Circuits and Systems Magazine - Q2 2022 - 23
IEEE Circuits and Systems Magazine - Q2 2022 - 24
IEEE Circuits and Systems Magazine - Q2 2022 - 25
IEEE Circuits and Systems Magazine - Q2 2022 - 26
IEEE Circuits and Systems Magazine - Q2 2022 - 27
IEEE Circuits and Systems Magazine - Q2 2022 - 28
IEEE Circuits and Systems Magazine - Q2 2022 - 29
IEEE Circuits and Systems Magazine - Q2 2022 - 30
IEEE Circuits and Systems Magazine - Q2 2022 - 31
IEEE Circuits and Systems Magazine - Q2 2022 - 32
IEEE Circuits and Systems Magazine - Q2 2022 - 33
IEEE Circuits and Systems Magazine - Q2 2022 - 34
IEEE Circuits and Systems Magazine - Q2 2022 - 35
IEEE Circuits and Systems Magazine - Q2 2022 - 36
IEEE Circuits and Systems Magazine - Q2 2022 - 37
IEEE Circuits and Systems Magazine - Q2 2022 - 38
IEEE Circuits and Systems Magazine - Q2 2022 - 39
IEEE Circuits and Systems Magazine - Q2 2022 - 40
IEEE Circuits and Systems Magazine - Q2 2022 - 41
IEEE Circuits and Systems Magazine - Q2 2022 - 42
IEEE Circuits and Systems Magazine - Q2 2022 - 43
IEEE Circuits and Systems Magazine - Q2 2022 - 44
IEEE Circuits and Systems Magazine - Q2 2022 - 45
IEEE Circuits and Systems Magazine - Q2 2022 - 46
IEEE Circuits and Systems Magazine - Q2 2022 - 47
IEEE Circuits and Systems Magazine - Q2 2022 - 48
IEEE Circuits and Systems Magazine - Q2 2022 - 49
IEEE Circuits and Systems Magazine - Q2 2022 - 50
IEEE Circuits and Systems Magazine - Q2 2022 - 51
IEEE Circuits and Systems Magazine - Q2 2022 - 52
IEEE Circuits and Systems Magazine - Q2 2022 - 53
IEEE Circuits and Systems Magazine - Q2 2022 - 54
IEEE Circuits and Systems Magazine - Q2 2022 - 55
IEEE Circuits and Systems Magazine - Q2 2022 - 56
IEEE Circuits and Systems Magazine - Q2 2022 - 57
IEEE Circuits and Systems Magazine - Q2 2022 - 58
IEEE Circuits and Systems Magazine - Q2 2022 - 59
IEEE Circuits and Systems Magazine - Q2 2022 - 60
IEEE Circuits and Systems Magazine - Q2 2022 - 61
IEEE Circuits and Systems Magazine - Q2 2022 - 62
IEEE Circuits and Systems Magazine - Q2 2022 - 63
IEEE Circuits and Systems Magazine - Q2 2022 - 64
IEEE Circuits and Systems Magazine - Q2 2022 - 65
IEEE Circuits and Systems Magazine - Q2 2022 - 66
IEEE Circuits and Systems Magazine - Q2 2022 - 67
IEEE Circuits and Systems Magazine - Q2 2022 - 68
IEEE Circuits and Systems Magazine - Q2 2022 - Cover3
IEEE Circuits and Systems Magazine - Q2 2022 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q1
https://www.nxtbookmedia.com