IEEE Circuits and Systems Magazine - Q3 2022 - 21

Engineering. He worked as Professor for the Electrical
and Computer Engineering Department of the University
of Porto, during 1980 1998. Since 1998 he worked at the
Institute of Engineering, Polytechnic Institute of Porto,
where he was Principal Coordinator Professor at Dept.
Electrical Engineering. His research interests included
Fractional-order Systems, Nonlinear Dynamics, Complex
systems, Modeling, Control, and Entropy. He was
member of the Editorial Board, Associate Editor, and
Editor in Chief of several journals. He was editor of Special
Issues in several journals, editor and author of
several books.
References
[1] M. D. Ortigueira, " Introduction to fractional linear systems. Part
2. Discrete-time case, " IEE Proc. - Vis., Image Signal Process., vol. 147,
no. 1, pp. 71-78, Feb. 2000, doi: 10.1049/ip-vis:20000273.
[2] M. D. Ortigueira and J. A. T. Machado, " The 21st century systems:
An updated vision of continuous-time fractional models, " Circuits Syst.
Mag., 2021.
[3] S. Elaydi, An Introduction to Difference Equations (Undergraduate
Texts in Mathematics). New York, NY, USA: Springer-Verlag, 2000.
[4] C. P. Neuman, " Properties of the delta operator model of dynamic physical
systems, " IEEE Trans. Syst., Man, Cybern., vol. 23, no. 1, pp. 296-301,
1993, doi: 10.1109/21.214791.
[5] J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Principles,
Algorithms, and Applications. NJ, USA: Prentice-Hall, 2007.
[6] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing,
3rd ed. Upper Saddle River, NJ, USA: Prentice-Hall, 2009.
[7] B. M. Ninness and G. C. Goodwin, " The relationship between discrete
time and continuous time linear estimation, " in Identification of
Continuous-Time Systems. Springer-Verlag, 1991, pp. 79-122.
[8] K. Premaratne, R. Salvi, N. Habib, and J. LeGall, " Delta-operator
formulated discrete-time approximations of continuous-time systems, "
IEEE Trans. Autom. Control, vol. 39, no. 3, pp. 581-585, 1994, doi:
10.1109/9.280764.
[9] H. V. Poor, " Delta-operator based signal processing: fast algorithms
for rapidly sampled data, " in Proc. 36th IEEE Conf. Decis. Control, 1997,
vol. 1, pp. 872-877, doi: 10.1109/CDC.1997.650752.
[10] R. Gessing, " Identification of shift and delta operator models for
small sampling periods, " in Proc. Amer. Control Conf. (Cat. No. 99CH36251),
1999, vol. 1, pp. 346-350, doi: 10.1109/ACC.1999.782798.
[11] H. H. Fan and P. De, " High speed adaptive signal progressing using
the delta operator, " Digital Signal Process., vol. 11, no. 1, pp. 3-34, 2001,
doi: 10.1006/dspr.1999.0352.
[12] R. Vijayan, H. V. Poor, J. B. Moore, and G. C. Goodwin, " A Levinsontype
algorithm for modeling fast-sampled data, " IEEE Trans. Autom.
Control, vol. 36, no. 3, pp. 314-321, 1991, doi: 10.1109/9.73564.
[13] C. J. Zarowski, " A QR-type algorithm for fitting the delta AR model
to autocorrelation windowed data, " IEEE Trans. Signal Process., vol. 41,
no. 4, pp. 1728-1730, 1993, doi: 10.1109/78.212757.
[14] H. Fan and X. Liu, " Delta Levinson and Schur-type RLS algorithms
for adaptive signal processing, " IEEE Trans. Signal Process., vol. 42,
no. 7, pp. 1629-1639, 1994, doi: 10.1109/78.298271.
[15] S. Hilger, " Analysis on measure chains - A unified approach to continuous
and discrete calculus, " Results Math., vol. 18, no. 1, pp. 18-56,
1990, doi: 10.1007/BF03323153.
[16] N. R. Bastos, " Fractional calculus on time scales, " 2012, arXiv:1202.2960.
[17] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An
Introduction with Applications. Springer Science & Business Media, 2001.
[18] R. P. Agarwal, M. Bohner, and D. O'Regan, " Time scale systems on
infinite intervals, " Nonlinear Anal., Theory, Methods Appl., vol. 47, no. 2,
pp. 837-848, 2001, doi: 10.1016/S0362-546X(01)00227-9.
[19] C. Goodrich and A. C. Peterson, Discrete Fractional Calculus. Springer-Verlag,
2015.
[20] J. Diaz and T. Osler, " Differences of fractional order, " Math. Comput.,
vol. 28, no. 125, pp. 185-202, 1974, doi: 10.2307/2005825.
THIRD QUARTER 2022
[21] D. Mozyrska and P. Ostalczyk, " Generalized fractional-order discretetime
integrator, " Complexity, vol. 2017, 2017, doi: 10.1155/2017/3452409.
[22] M. D. Ortigueira, F. J. V. Coito, and J. J. Trujillo, " Discrete-time differential
systems, " Signal Process., vol. 107, pp. 198-217, 2015, doi: 10.1016/j.
sigpro.2014.03.004.
[23] A. Tustin, " A method of analysing the behaviour of linear systems
in terms of time series, " J. Inst. Electric. Eng. - Part IIA, Autom. Regulators
Servo Mechanisms, vol. 94, no. 1, pp. 130-142, May 1947, doi: 10.1049/
ji-2a.1947.0020.
[24] M. Roberts, Signals and Systems: Analysis using Transform Methods
and MATLAB, 2nd ed. McGraw-Hill, 2003.
[25] I. Petráš, Fractional-Order Nonlinear Systems: Modeling, Analysis
and Simulation. Springer Science & Business Media, 2011.
[26] M. D. Ortigueira and J. A. T. Machado, " New discrete-time fractional
derivatives based on the bilinear transformation: Definitions and properties, "
J. Adv. Res., vol. 25, pp. 1-10, 2020, doi: 10.1016/j.jare.2020.02.011.
[27] M. D. Ortigueira, D. F. Torres, and J. J. Trujillo, " Exponentials and
Laplace transforms on nonuniform time scales, " Commun. Nonlinear Sci.
Numer. Simul., vol. 39, pp. 252-270, 2016, doi: 10.1016/j.cnsns.2016.03.010.
[28] A. V. Oppenheim, A. S. Willsky, and S. Hamid, Signals and Systems,
2nd ed. Upper Saddle River, NJ: Prentice-Hall, 1997.
[29] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications
of Fractional Differential Equations. Amsterdam: Elsevier, 2006.
[30] M. D. Ortigueira and D. Valério, Fractional Signals and Systems. Berlin,
Boston: De Gruyter, 2020.
[31] H. H. Fan, " Efficient zero location tests for delta-operator-based
polynomials, " IEEE Trans. Autom. Control, vol. 42, no. 5, pp. 722-727,
May 1997, doi: 10.1109/9.580890.
[32] M. D. Ortigueira and F. J. V. Coito, " System initial conditions vs derivative
initial conditions, " Comput. Math. Appl., vol. 59, no. 5, pp. 1782-
1789, 2010, doi: 10.1016/j.camwa.2009.08.036.
[33] M. D. Ortigueira, Fractional Calculus for Scientists and Engineers
(Lecture Notes in Electrical Engineering). Dordrecht, Heidelberg:
Springer-Verlag, 2011.
[34] M. D. Ortigueira and J. A. T. Machado, " Which derivative? " Fractal
Fractional, vol. 1, no. 1, 2017. [Online]. Available: http://www.mdpi.com/
2504-3110/1/1/3
[35] P. Henrici, Applied and Computational Complex Analysis. WileyInterscience,
1991, vol. 2.
[36] R. Magin, M. D. Ortigueira, I. Podlubny, and J. Trujillo, " On the fractional
signals and systems, " Signal Process., vol. 91, no. 3, pp. 350-371,
2011, doi: 10.1016/j.sigpro.2010.08.003.
[37] T. Kailath, Linear Systems (Information and System Sciences Series).
Prentice-Hall, 1980. [Online]. Available: https://books.google.pt/
books?id=ggYqAQAAMAAJ
[38] R. C. Dorf and R. H. Bishop, Modern Control Systems (Electrical &
Computing Engineering: Control Theory). Heidelberg: Pearson, 2017.
[39] R. A. DeCarlo, Linear Systems: A State Variable Approach with Numerical
Implementation. Upper Saddle River, NJ, USA: Prentice-Hall,
Inc., 1989.
[40] T. Kaczorek and L. Sajewski, The Realization Problem for Positive
and Fractional Systems (Studies in Systems, Decision and Control 1).
Cham: Springer-Verlag, 2014.
[41] D. Valério and J. S. da Costa, An Introduction to Fractional Control
(Control Engineering). Stevenage: IET, 2012.
[42] T. Kaczorek, Selected Problems of Fractional Systems Theory (Lecture
Notes in Control and Information Sciences, vol. 411). Berlin Heidelberg:
Springer-Verlag, 2011.
[43] M. D. Ortigueira, A. M. Lopes, and J. A. T. Machado, " On the computation
of the multidimensional Mittag-Leffler function, " Commun. Nonlinear
Sci. Numer. Simulation, vol. 53, pp. 278-287, 2017, doi: 10.1016/j.
cnsns.2017.05.007.
[44] M. D. Ortigueira and A. J. Serralheiro, " A new least-squares approach
to differ integration modeling, " Signal Process., vol. 86, no. 10,
pp. 2582-2591, Oct. 2006, doi: 10.1016/j.sigpro.2006.02.013.
[45] M. D. Ortigueira and A. J. Serralheiro, " Pseudo-fractional ARMA
modelling using a double Levinson recursion, " IET Control Theory Appl.,
vol. 1, no. 1, pp. 173-178, Jan. 2007.
[46] G. Maione and M. P. Lazarevic´, " On the symmetric distribution of
interlaced zero-pole pairs approximating the discrete fractional Tustin
operator, " in Proc. IEEE Int. Conf. Syst., Man Cybern. (SMC), 2019,
pp. 2578-2583, doi: 10.1109/SMC.2019.8914260.
IEEE CIRCUITS AND SYSTEMS MAGAZINE
21
http://www.mdpi.com/2504-3110/1/1/3 http://www.mdpi.com/2504-3110/1/1/3 https://books.google.pt/books?id=ggYqAQAAMAAJ https://books.google.pt/books?id=ggYqAQAAMAAJ

IEEE Circuits and Systems Magazine - Q3 2022

Table of Contents for the Digital Edition of IEEE Circuits and Systems Magazine - Q3 2022

Contents
IEEE Circuits and Systems Magazine - Q3 2022 - Cover1
IEEE Circuits and Systems Magazine - Q3 2022 - Cover2
IEEE Circuits and Systems Magazine - Q3 2022 - Contents
IEEE Circuits and Systems Magazine - Q3 2022 - 2
IEEE Circuits and Systems Magazine - Q3 2022 - 3
IEEE Circuits and Systems Magazine - Q3 2022 - 4
IEEE Circuits and Systems Magazine - Q3 2022 - 5
IEEE Circuits and Systems Magazine - Q3 2022 - 6
IEEE Circuits and Systems Magazine - Q3 2022 - 7
IEEE Circuits and Systems Magazine - Q3 2022 - 8
IEEE Circuits and Systems Magazine - Q3 2022 - 9
IEEE Circuits and Systems Magazine - Q3 2022 - 10
IEEE Circuits and Systems Magazine - Q3 2022 - 11
IEEE Circuits and Systems Magazine - Q3 2022 - 12
IEEE Circuits and Systems Magazine - Q3 2022 - 13
IEEE Circuits and Systems Magazine - Q3 2022 - 14
IEEE Circuits and Systems Magazine - Q3 2022 - 15
IEEE Circuits and Systems Magazine - Q3 2022 - 16
IEEE Circuits and Systems Magazine - Q3 2022 - 17
IEEE Circuits and Systems Magazine - Q3 2022 - 18
IEEE Circuits and Systems Magazine - Q3 2022 - 19
IEEE Circuits and Systems Magazine - Q3 2022 - 20
IEEE Circuits and Systems Magazine - Q3 2022 - 21
IEEE Circuits and Systems Magazine - Q3 2022 - 22
IEEE Circuits and Systems Magazine - Q3 2022 - 23
IEEE Circuits and Systems Magazine - Q3 2022 - 24
IEEE Circuits and Systems Magazine - Q3 2022 - 25
IEEE Circuits and Systems Magazine - Q3 2022 - 26
IEEE Circuits and Systems Magazine - Q3 2022 - 27
IEEE Circuits and Systems Magazine - Q3 2022 - 28
IEEE Circuits and Systems Magazine - Q3 2022 - 29
IEEE Circuits and Systems Magazine - Q3 2022 - 30
IEEE Circuits and Systems Magazine - Q3 2022 - 31
IEEE Circuits and Systems Magazine - Q3 2022 - 32
IEEE Circuits and Systems Magazine - Q3 2022 - 33
IEEE Circuits and Systems Magazine - Q3 2022 - 34
IEEE Circuits and Systems Magazine - Q3 2022 - 35
IEEE Circuits and Systems Magazine - Q3 2022 - 36
IEEE Circuits and Systems Magazine - Q3 2022 - 37
IEEE Circuits and Systems Magazine - Q3 2022 - 38
IEEE Circuits and Systems Magazine - Q3 2022 - 39
IEEE Circuits and Systems Magazine - Q3 2022 - 40
IEEE Circuits and Systems Magazine - Q3 2022 - 41
IEEE Circuits and Systems Magazine - Q3 2022 - 42
IEEE Circuits and Systems Magazine - Q3 2022 - 43
IEEE Circuits and Systems Magazine - Q3 2022 - 44
IEEE Circuits and Systems Magazine - Q3 2022 - 45
IEEE Circuits and Systems Magazine - Q3 2022 - 46
IEEE Circuits and Systems Magazine - Q3 2022 - 47
IEEE Circuits and Systems Magazine - Q3 2022 - 48
IEEE Circuits and Systems Magazine - Q3 2022 - 49
IEEE Circuits and Systems Magazine - Q3 2022 - 50
IEEE Circuits and Systems Magazine - Q3 2022 - 51
IEEE Circuits and Systems Magazine - Q3 2022 - 52
IEEE Circuits and Systems Magazine - Q3 2022 - 53
IEEE Circuits and Systems Magazine - Q3 2022 - 54
IEEE Circuits and Systems Magazine - Q3 2022 - 55
IEEE Circuits and Systems Magazine - Q3 2022 - 56
IEEE Circuits and Systems Magazine - Q3 2022 - 57
IEEE Circuits and Systems Magazine - Q3 2022 - 58
IEEE Circuits and Systems Magazine - Q3 2022 - 59
IEEE Circuits and Systems Magazine - Q3 2022 - 60
IEEE Circuits and Systems Magazine - Q3 2022 - Cover3
IEEE Circuits and Systems Magazine - Q3 2022 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q1
https://www.nxtbookmedia.com