IEEE Circuits and Systems Magazine - Q4 2022 - 24

[5] V. Raghavan et al., " Millimeter-wave MIMO prototype: Measurements
and experimental results, " IEEE Commun. Mag., vol. 56, no. 1,
pp. 202-209, Jan. 2018.
[6] Y. Huang et al., " Multi-panel MIMO in 5G, " IEEE Commun. Mag.,
vol. 56, no. 3, pp. 56-61, Mar. 2018.
[7] R. W. Heath, Jr., et al., " An overview of signal processing techniques
for millimeter wave MIMO systems, " IEEE J. Sel. Topics Signal Process.,
vol. 10, no. 3, pp. 436-453, Apr. 2016.
[8] H. Shokri-Ghadikolaei et al., " Millimeter wave cellular networks: A
MAC layer perspective, " IEEE Trans. Commun., vol. 63, no. 10, pp. 3437-
3458, Oct. 2015.
[9] P. Yang et al., " 6G wireless communications: Vision and potential
techniques, " IEEE Netw., vol. 33, no. 4, pp. 70-75, Jul. 2019.
[10] Z. Zhang et al., " 6G wireless networks: Vision, requirements, architecture,
and key technologies, " IEEE Veh. Technol. Mag., vol. 14, no. 3,
pp. 28-41, Sep. 2019.
[11] R. Rotman, M. Tur, and L. Yaron, " True time delay in phased arrays, "
Proc. IEEE, vol. 104, no. 3, pp. 504-518, Mar. 2016.
[12] T.-S. Chu, J. Roderick, and H. Hashemi, " An integrated ultra-wideband
timed array receiver in 0.13 µm CMOS using a path-sharing true
time delay architecture, " IEEE J. Solid-State Circuits, vol. 42, no. 12, pp.
2834-2850, Dec. 2007.
[13] H. Hashemi, T.-S. Chu, and J. Roderick, " Integrated true-time-delaybased
ultra-wideband array processing, " IEEE Commun. Mag., vol. 46,
no. 9, pp. 162-172, Sep. 2008.
[14] T. Chu and H. Hashemi, " True-time-delay-based multi-beam arrays, "
IEEE Trans. Microw. Theory Techn., vol. 61, no. 8, pp. 3072-3082,
Aug. 2013.
[15] S. Garakoui et al., " Compact cascadable g m -C all-pass true-timedelay
cell with reduced delay variation over frequency, " IEEE J. SolidState
Circuits, vol. 50, no. 3, pp. 693-703, Mar. 2015.
[16] F. Hu and K. Mouthaan, " A 1-20 GHz 400 ps true-time delay with
small delay error in 0.13 µm CMOS for broadband phased array antennas, "
in IEEE MTT-S Int. Microw. Symp. Dig., May 2015, pp. 1-3.
[17] M.-K. Cho, I. Song, and J. D. Cressler, " A true time delay-based SiGe
bi-directional T/R chipset for large-scale wideband timed array antennas, "
in Proc. IEEE Radio Freq. Integr. Circuits Symp. (RFIC), Jun. 2018,
pp. 272-275.
[18] S. Jang et al., " A true time delay 16-element 4-beam digital beamformer, "
in Proc. IEEE Radio Freq. Integr. Circuits Symp. (RFIC), Jun. 2018,
pp. 12-15.
[19] S. Mondal et al., " A 25-30 GHz fully-connected hybrid beamforming
receiver for MIMO communication, " IEEE J. Solid-State Circuits, vol. 53,
no. 5, pp. 1275-1287, May 2018.
[20] S. Jang et al., " A 1-GHz 16-element four-beam true-time-delay digital
beamformer, " IEEE J. Solid-State Circuits, vol. 54, no. 5, pp. 1304-1314,
May 2019.
[21] M. B. Dastjerdi et al., " 28.6 full-duplex 2×2 MIMO circulatorreceiver
with high TX power handling exploiting MIMO RF and
shared-delay baseband self-interference cancellation, " in IEEE Int.
Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2019, pp.
448-450.
[22] E. Ghaderi et al., " An integrated discrete-time delay-compensating
technique for large-array beamformers, " IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 66, no. 9, pp. 3296-3306, Sep. 2019.
[23] E. Ghaderi et al., " A 4-element 500 MHz-modulated-BW 40 mW 6b 1
GS/s analog-time-to-digital-converter-enabled spatial signal processor
in 65 nm CMOS, " in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, Feb. 2020, pp. 186-188.
[24] K. Spoof et al., " A 0.6-4.0 GHz RF-resampling beamforming receiver
with frequency-scaling true-time-delays up to three carrier cycles, "
IEEE Solid-State Circuits Lett., vol. 3, pp. 234-237, 2020.
[25] E. Ghaderi and S. Gupta, " A four-element 500-MHz 40-mW 6-bit
ADC-enabled time-domain spatial signal processor, " IEEE J. Solid-State
Circuits, vol. 56, no. 6, pp. 1784-1794, Jun. 2021.
[26] C.-C. Lin et al., " A 4-element 800 MHz-BW 29 mW true-time-delay
spatial signal processor enabling fast beam-training with data communications, "
in Proc. IEEE 47th Eur. Solid State Circuits Conf. (ESSCIRC),
Sep. 2021, pp. 287-290.
[27] J. Paramesh et al., " A four-antenna receiver in 90-nm CMOS for
beamforming and spatial diversity, " IEEE J. Solid-State Circuits, vol. 40,
no. 12, pp. 2515-2524, Dec. 2005.
24
IEEE cIrcuIts and systEms magazInE
[28] A. Hajimiri et al., " Integrated phased array systems in silicon, "
Proc. IEEE, vol. 93, no. 9, pp. 1637-1655, Sep. 2005.
[29] A. Natarajan, A. Komijani, and A. Hajimiri, " A fully integrated 24GHz
phased-array transmitter in CMOS, " IEEE J. Solid-State Circuits, vol.
40, no. 12, pp. 2502-2514, Dec. 2005.
[30] A. Natarajan et al., " A 77-GHz phased-array transceiver with onchip
antennas in silicon: Transmitter and local lo-path phase shifting, "
IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2807-2819, Dec.
2006.
[31] S. Jeon et al., " A scalable 6-to-18 GHz concurrent dual-band quadbeam
phased-array receiver in CMOS, " IEEE J. Solid-State Circuits, vol.
43, no. 12, pp. 2660-2673, Dec. 2008.
[32] H. Krishnaswamy and H. Hashemi, " A 4-channel 4-beam 24-to-26
GHz spatio-temporal RAKE radar transceiver in 90 nm CMOS for vehicular
radar applications, " in IEEE Int. Solid-State Circuits Conf. (ISSCC)
Dig. Tech. Papers, Feb. 2010, pp. 214-215.
[33] A. Valdes-Garcia et al., " A fully integrated 16-element phased-array
transmitter in SiGe BiCMOS for 60-GHz communications, " IEEE J. SolidState
Circuits, vol. 45, no. 12, pp. 2757-2773, Dec. 2010.
[34] M. C. M. Soer et al., " Spatial interferer rejection in a four-element
beamforming receiver front-end with a switched-capacitor vector
modulator, " IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 2933-2942,
Dec. 2011.
[35] A. Natarajan et al., " A fully-integrated 16-element phased-array receiver
in SiGe BiCMOS for 60-GHz communications, " IEEE J. Solid-State
Circuits, vol. 46, no. 5, pp. 1059-1075, May 2011.
[36] M. Soer et al., " A 1.5-to-5.0 GHz input-matched +2 dBm P1dB allpassive
switched-capacitor beamforming receiver front-end in 65 nm
CMOS, " in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers,
Feb. 2012, pp. 174-176.
[37] A. Ghaffari et al., " A 4-element phased-array system with simultaneous
spatial- and frequency-domain filtering at the antenna inputs, "
IEEE J. Solid-State Circuits, vol. 49, no. 6, pp. 1303-1316, Jun. 2014.
[38] H. Krishnaswamy and L. Zhang, " Analog and RF interference mitigation
for integrated MIMO receiver arrays, " Proc. IEEE, vol. 104, no. 3,
pp. 561-575, Mar. 2016.
[39] L. Zhang, A. Natarajan, and H. Krishnaswamy, " Scalable spatial
notch suppression in spatio-spectral-filtering MIMO receiver arrays
for digital beamforming, " IEEE J. Solid-State Circuits, vol. 51, no. 12, pp.
3152-3166, Dec. 2016.
[40] L. Zhang and H. Krishnaswamy, " Arbitrary analog/RF spatial filtering
for digital MIMO receiver arrays, " IEEE J. Solid-State Circuits, vol. 52,
no. 12, pp. 3392-3404, Dec. 2017.
[41] M.-Y. Huang et al., " An all-passive negative feedback network for
broadband and wide field-of-view self-steering beam-forming with
zero DC power consumption, " IEEE J. Solid-State Circuits, vol. 52, no. 5,
pp. 1260-1273, May 2017.
[42] M. Johnson et al., " A 4-element 28 GHz millimeter-wave MIMO array
with single-wire interface using code-domain multiplexing in 65 nm
CMOS, " in Proc. IEEE Radio Freq. Integr. Circuits Symp. (RFIC), Jun. 2019,
pp. 243-246.
[43] M.-Y. Huang and H. Wang, " A 27-to-41 GHz MIMO receiver with Ninput-N-output
using scalable cascadable autonomous array-based
high-order spatial
filters for instinctual
full-FoV multi-blocker/signal
management, " in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, Feb. 2019, pp. 346-348.
[44] M.-Y. Huang and H. Wang, " A mm-wave wideband MIMO RX with instinctual
array-based blocker/signal management for ultralow-latency
communication, " IEEE J. Solid-State Circuits, vol. 54, no. 12, pp. 3553-
3564, Dec. 2019.
[45] S. Mondal and J. Paramesh, " A reconfigurable 28-/37-GHz MMSEadaptive
hybrid-beamforming receiver for carrier aggregation and
multi-standard MIMO communication, " IEEE J. Solid-State Circuits, vol.
54, no. 5, pp. 1391-1406, May 2019.
[46] I. Mondal and N. Krishnapura, " A 2-GHz bandwidth, 0.25-1.7 ns
true-time-delay element using a variable-order all-pass filter architecture
in 0.13 µm CMOS, " IEEE J. Solid-State Circuits, vol. 52, no. 8, pp.
2180-2193, Aug. 2017.
[47] B. Wang et al., " Spatial- and frequency-wideband effects in millimeter-wave
massive MIMO systems, " IEEE Trans. Signal Process., vol. 66,
no. 13, pp. 3393-3406, Jul. 2018.
Fourth quartEr 2022

IEEE Circuits and Systems Magazine - Q4 2022

Table of Contents for the Digital Edition of IEEE Circuits and Systems Magazine - Q4 2022

Contents
IEEE Circuits and Systems Magazine - Q4 2022 - Cover1
IEEE Circuits and Systems Magazine - Q4 2022 - Cover2
IEEE Circuits and Systems Magazine - Q4 2022 - Contents
IEEE Circuits and Systems Magazine - Q4 2022 - 2
IEEE Circuits and Systems Magazine - Q4 2022 - 3
IEEE Circuits and Systems Magazine - Q4 2022 - 4
IEEE Circuits and Systems Magazine - Q4 2022 - 5
IEEE Circuits and Systems Magazine - Q4 2022 - 6
IEEE Circuits and Systems Magazine - Q4 2022 - 7
IEEE Circuits and Systems Magazine - Q4 2022 - 8
IEEE Circuits and Systems Magazine - Q4 2022 - 9
IEEE Circuits and Systems Magazine - Q4 2022 - 10
IEEE Circuits and Systems Magazine - Q4 2022 - 11
IEEE Circuits and Systems Magazine - Q4 2022 - 12
IEEE Circuits and Systems Magazine - Q4 2022 - 13
IEEE Circuits and Systems Magazine - Q4 2022 - 14
IEEE Circuits and Systems Magazine - Q4 2022 - 15
IEEE Circuits and Systems Magazine - Q4 2022 - 16
IEEE Circuits and Systems Magazine - Q4 2022 - 17
IEEE Circuits and Systems Magazine - Q4 2022 - 18
IEEE Circuits and Systems Magazine - Q4 2022 - 19
IEEE Circuits and Systems Magazine - Q4 2022 - 20
IEEE Circuits and Systems Magazine - Q4 2022 - 21
IEEE Circuits and Systems Magazine - Q4 2022 - 22
IEEE Circuits and Systems Magazine - Q4 2022 - 23
IEEE Circuits and Systems Magazine - Q4 2022 - 24
IEEE Circuits and Systems Magazine - Q4 2022 - 25
IEEE Circuits and Systems Magazine - Q4 2022 - 26
IEEE Circuits and Systems Magazine - Q4 2022 - 27
IEEE Circuits and Systems Magazine - Q4 2022 - 28
IEEE Circuits and Systems Magazine - Q4 2022 - 29
IEEE Circuits and Systems Magazine - Q4 2022 - 30
IEEE Circuits and Systems Magazine - Q4 2022 - 31
IEEE Circuits and Systems Magazine - Q4 2022 - 32
IEEE Circuits and Systems Magazine - Q4 2022 - 33
IEEE Circuits and Systems Magazine - Q4 2022 - 34
IEEE Circuits and Systems Magazine - Q4 2022 - 35
IEEE Circuits and Systems Magazine - Q4 2022 - 36
IEEE Circuits and Systems Magazine - Q4 2022 - 37
IEEE Circuits and Systems Magazine - Q4 2022 - 38
IEEE Circuits and Systems Magazine - Q4 2022 - 39
IEEE Circuits and Systems Magazine - Q4 2022 - 40
IEEE Circuits and Systems Magazine - Q4 2022 - 41
IEEE Circuits and Systems Magazine - Q4 2022 - 42
IEEE Circuits and Systems Magazine - Q4 2022 - 43
IEEE Circuits and Systems Magazine - Q4 2022 - 44
IEEE Circuits and Systems Magazine - Q4 2022 - 45
IEEE Circuits and Systems Magazine - Q4 2022 - 46
IEEE Circuits and Systems Magazine - Q4 2022 - 47
IEEE Circuits and Systems Magazine - Q4 2022 - 48
IEEE Circuits and Systems Magazine - Q4 2022 - 49
IEEE Circuits and Systems Magazine - Q4 2022 - 50
IEEE Circuits and Systems Magazine - Q4 2022 - 51
IEEE Circuits and Systems Magazine - Q4 2022 - 52
IEEE Circuits and Systems Magazine - Q4 2022 - 53
IEEE Circuits and Systems Magazine - Q4 2022 - 54
IEEE Circuits and Systems Magazine - Q4 2022 - 55
IEEE Circuits and Systems Magazine - Q4 2022 - 56
IEEE Circuits and Systems Magazine - Q4 2022 - 57
IEEE Circuits and Systems Magazine - Q4 2022 - 58
IEEE Circuits and Systems Magazine - Q4 2022 - 59
IEEE Circuits and Systems Magazine - Q4 2022 - 60
IEEE Circuits and Systems Magazine - Q4 2022 - 61
IEEE Circuits and Systems Magazine - Q4 2022 - 62
IEEE Circuits and Systems Magazine - Q4 2022 - 63
IEEE Circuits and Systems Magazine - Q4 2022 - 64
IEEE Circuits and Systems Magazine - Q4 2022 - 65
IEEE Circuits and Systems Magazine - Q4 2022 - 66
IEEE Circuits and Systems Magazine - Q4 2022 - 67
IEEE Circuits and Systems Magazine - Q4 2022 - 68
IEEE Circuits and Systems Magazine - Q4 2022 - 69
IEEE Circuits and Systems Magazine - Q4 2022 - 70
IEEE Circuits and Systems Magazine - Q4 2022 - 71
IEEE Circuits and Systems Magazine - Q4 2022 - 72
IEEE Circuits and Systems Magazine - Q4 2022 - 73
IEEE Circuits and Systems Magazine - Q4 2022 - 74
IEEE Circuits and Systems Magazine - Q4 2022 - 75
IEEE Circuits and Systems Magazine - Q4 2022 - 76
IEEE Circuits and Systems Magazine - Q4 2022 - 77
IEEE Circuits and Systems Magazine - Q4 2022 - 78
IEEE Circuits and Systems Magazine - Q4 2022 - 79
IEEE Circuits and Systems Magazine - Q4 2022 - 80
IEEE Circuits and Systems Magazine - Q4 2022 - Cover3
IEEE Circuits and Systems Magazine - Q4 2022 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q1
https://www.nxtbookmedia.com