IEEE Circuits and Systems Magazine - Q4 2022 - 25

[48] M. Cai, " Modeling and mitigating beam squint in millimeter wave
wireless communication, " Ph.D. dissertation, Dept. Elect. Eng, Univ.
Notre Dame, Notre Dame, IN, USA, 2018.
[49] B. Wang et al., " Spatial-wideband effect in massive MIMO with
application in mmWave systems, " IEEE Commun. Mag., vol. 56, no. 12,
pp. 134-141, Dec. 2018.
[50] X. Liu and D. Qiao, " Space-time block coding-based beamforming
for beam squint compensation, " IEEE Wireless Commun. Lett., vol. 8, no.
1, pp. 241-244, Feb. 2019.
[51] V. Boljanovic et al., " Fast beam training with true-time-delay arrays
in wideband millimeter-wave systems, " IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 68, no. 4, pp. 1727-1739, Apr. 2021.
[52] E. Ghaderi et al., " Four-element wide modulated bandwidth MIMO
receiver with >35-dB interference cancellation, " IEEE Trans. Microw.
Theory Techn., vol. 68, no. 9, pp. 3930-3941, Sep. 2020.
[53] R. J. Mailloux, Phased Array Antenna Handbook, 2nd ed. Boston,
MA, USA: Artech House, Mar. 2005.
[54] Electromagnetic Waves and Antennas. Accessed: Apr. 10, 2022.
[Online]. Available: https://www.ece.rutgers.edu/~orfanidi/ewa/
[55] H. Yan and D. Cabric, " Compressive initial access and beamforming
training for millimeter-wave cellular systems, " IEEE J. Sel. Topics
Signal Process., vol. 13, no. 5, pp. 1151-1166, Sep. 2019.
[56] M. Giordani et al., " A tutorial on beam management for 3GPP NR
at mmWave frequencies, " IEEE Commun. Surveys Tuts., vol. 21, no. 1, pp.
173-196, 1st Quart., 2018.
[57] C. Jeong, J. Park, and H. Yu, " Random access in millimeter-wave
beamforming cellular networks: Issues and approaches, " IEEE Commun.
Mag., vol. 53, no. 1, pp. 180-185, Jan. 2015.
[58] J. Kim and A. F. Molisch, " Fast millimeter-wave beam training with
receive beamforming, " J. Commun. Netw., vol. 16, no. 5, pp. 512-522,
Oct. 2014.
[59] K. Hosoya et al., " Multiple sector ID capture (MIDC): A novel
beamforming technique for 60-GHz band multi-Gbps WLAN/PAN
systems, " IEEE Trans. Antennas Propag., vol. 63, no. 1, pp. 81-96, Jan.
2015.
[60] L. Zhou and Y. Ohashi, " Efficient codebook-based MIMO beamforming
for millimeter-wave WLANs, " in Proc. IEEE 23rd Int. Symp.
Pers., Indoor Mobile Radio Commun. (PIMRC), Sep. 2012, pp. 1885-
1889.
[61] H. Yan, V. Boljanovic, and D. Cabric, " Wideband millimeterwave
beam training with true-time-delay array architecture, "
in Proc. 53rd Asilomar Conf. Signals, Syst., Comput., Nov. 2019,
pp. 1447-1452.
[62] M. Sayginer and G. M. Rebeiz, " An eight-element 2-16-GHz programmable
phased array receiver with one, two, or four simultaneous
beams in SiGe BiCMOS, " IEEE Trans. Microw. Theory Techn., vol.
64, no. 12, pp. 4585-4597, Dec. 2016.
[63] A. Nafe et al., " 2×64-element dual-polarized dual-beam single-aperture
28-GHz phased array with 2×30 Gb/s links for 5G polarization
MIMO, " IEEE Trans. Microw. Theory Techn., vol. 68, no. 9, pp. 3872-3884,
Sep. 2020.
[64] B. Sadhu et al., " A 28-GHz 32-element TRX phased-array IC with
concurrent dual-polarized operation and orthogonal phase and gain
control for 5G communications, " IEEE J. Solid-State Circuits, vol. 52, no.
12, pp. 3373-3391, Dec. 2017.
[65] J. D. Dunworth et al., " A 28 GHz bulk-CMOS dual-polarization
phased-array transceiver with 24 channels for 5G user and basestation
equipment, " in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, Feb. 2018, pp. 70-72.
[66] J. Pang et al., " A 28-GHz CMOS phased-array transceiver based on
LO phase-shifting architecture with gain invariant phase tuning for 5G
new radio, " IEEE J. Solid-State Circuits, vol. 54, no. 5, pp. 1228-1242, May
2019.
[67] Y. Wang et al., " A 39-GHz 64-element phased-array transceiver with
built-in phase and amplitude calibrations for large-array 5G NR in 65nm
CMOS, " IEEE J. Solid-State Circuits, vol. 55, no. 5, pp. 1249-1269, May
2020.
[68] G. Mangraviti et al., " A 4-antenna-path beamforming transceiver
for 60 GHz multi-Gb/s communication in 28 nm CMOS, " in IEEE
Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Jan. 2016, pp.
246-247.
[69] S. Pellerano et al., " A scalable 71-to-76 GHz 64-element phased-array
transceiver module with 2×2 direct-conversion IC in 22 nm FinFET
CMOS technology, " in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig.
Tech. Papers, Feb. 2019, pp. 174-176.
[70] B. Yang et al., " Digital beamforming-based massive MIMO transceiver
for 5G millimeter-wave communications, " IEEE Trans. Microw.
Theory Techn., vol. 66, no. 7, pp. 3403-3418, Jul. 2018.
[71] A. Nagulu et al., " A full-duplex receiver with true-time-delay cancelers
based on switched-capacitor-networks operating beyond the
delay-bandwidth limit, " IEEE J. Solid-State Circuits, vol. 56, no. 5, pp.
1398-1411, May 2021.
[72] X. Guan, H. Hashemi, and A. Hajimiri, " A fully integrated 24-GHz
eight-element phased-array receiver in silicon, " IEEE J. Solid-State Circuits,
vol. 39, no. 12, pp. 2311-2320, Dec. 2004.
[73] Y. Ghasempour et al., " Single shot single antenna path discovery in
THz networks, " in Proc. 26th Annu. Int. Conf. Mobile Comput. Netw. New
York, NY, USA: Association for Computing Machinery, Apr. 2020, pp.
1-13, doi: 10.1145/3372224.3380895.
[74] J. Tan and L. Dai, " Wideband beam tracking in THz massive MIMO
systems, " IEEE J. Sel. Areas Commun., vol. 39, no. 6, pp. 1693-1710, Jun.
2021.
[75] V. Boljanovic et al., " Design of millimeter-wave single-shot beam
training for true-time-delay array, " in Proc. IEEE 21st Int. Workshop Signal
Process. Adv. Wireless Commun. (SPAWC), May 2020, pp. 1-5.
[76] 5GPPP. (May 2017). Measurement Results and Final mmMAGIC Channel
Models. [Online]. Available: http://5g-mmmagic.eu
[77] L. Kull et al., " A 24-72-GS/s 8-b time-interleaved SAR ADC
with 2.0-3.3-pJ/conversion and SNDR at Nyquist in 14-nm CMOS
FinFET, " IEEE J. Solid-State Circuits, vol. 53, no. 12, pp. 3508-3516,
Dec. 2018.
[78] Y. M. Greshishchev et al., " A 40 GS/s 6b ADC in 65 nm CMOS, " in
IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2010,
pp. 390-391.
[79] B. Hershberg et al., " A 61.5 dB SNDR pipelined ADC using simple
highly-scalable ring amplifiers, " in Proc. Symp. VLSI Circuits (VLSIC),
Jun. 2012, pp. 32-33.
[80] B. Hershberg et al., " Ring amplifiers for switched capacitor circuits, "
IEEE J. Solid-State Circuits, vol. 47, no. 12, pp. 2928-2942, Dec.
2012.
[81] M.-T. Hsieh and G. Sobelman, " Architectures for multi-gigabit wirelinked
clock and data recovery, " IEEE Circuits Syst. Mag., vol. 8, no. 4, pp.
45-57, 4th Quart., 2008.
[82] M. Y. He and J. Poulton, " A CMOS mixed-signal clock and data
recovery circuit for OIF CEI-6G+ backplane transceiver, " IEEE J. SolidState
Circuits, vol. 41, no. 3, pp. 597-606, Mar. 2006.
[83] Y.-H. Liu and T.-H. Lin, " A wideband PLL-based G/FSK transmitter
in 0.18 µm CMOS, " IEEE J. Solid-State Circuits, vol. 44, no. 9, pp. 2452-
2462, Sep. 2009.
[84] P.-E. Su and S. Pamarti, " A 2.4 GHz wideband open-loop GFSK transmitter
with phase quantization noise cancellation, " IEEE J. Solid-State
Circuits, vol. 46, no. 3, pp. 615-626, Mar. 2011.
[85] D. Weinlader, " Precision CMOS receivers for VLSI testing applications, "
Ph.D. dissertation, Stanford Univ., Stanford, CA, USA, Nov.
2001.
[Online]. Available: https://vlsiweb.stanford.edu/people/alum/
pdf/0111_Weinlader_Precision_CMOS_Receivers_pdf
[86] J. F. Bulzacchelli et al., " A 10-Gb/s 5-tap DFE/4-tap FFE transceiver
in 90-nm CMOS technology, " IEEE J. Solid-State Circuits, vol. 41, no. 12,
pp. 2885-2900, Dec. 2006.
[87] S. Bansal et al., " Neural-network based self-initializing algorithm
for multi-parameter optimization of high-speed ADCs, " IEEE Trans. Circuits
Syst. II, Exp. Briefs, vol. 68, no. 1, pp. 106-110, Jan. 2021.
[88] C.-C. Lin et al., " Multi-mode spatial signal processor with rainbow-like
fast beam training and wideband communications using
true-time-delay arrays, " IEEE J. Solid-State Circuits, vol. 57, no. 11,
pp. 3348-3360, Nov. 2022, doi: 10.1109/JSSC.2022.3178798.
[89] A. Wadaskar et al., " 3D rainbow beam design for fast beam training
with true-time-delay arrays in wideband millimeter-wave systems, "
in Proc. 55th Asilomar Conf. Signals, Syst., Comput., Oct. 2021,
pp. 85-92.
[90] R. Li, H. Yan, and D. Cabric, " Rainbow-link: Beam-alignment-free
and grant-free mmW multiple access using true-time-delay array, " IEEE
J. Sel. Areas Commun., vol. 40, no. 5, pp. 1692-1705, May 2022.
Fourth quartEr 2022
IEEE cIrcuIts and systEms magazInE
25
https://www.ece.rutgers.edu/~orfanidi/ewa/ https://5g-mmmagic.eu/ https://vlsiweb.stanford.edu/people/alum/pdf/0111_Weinlader_Precision_CMOS_Receivers_.pdf https://vlsiweb.stanford.edu/people/alum/pdf/0111_Weinlader_Precision_CMOS_Receivers_.pdf

IEEE Circuits and Systems Magazine - Q4 2022

Table of Contents for the Digital Edition of IEEE Circuits and Systems Magazine - Q4 2022

Contents
IEEE Circuits and Systems Magazine - Q4 2022 - Cover1
IEEE Circuits and Systems Magazine - Q4 2022 - Cover2
IEEE Circuits and Systems Magazine - Q4 2022 - Contents
IEEE Circuits and Systems Magazine - Q4 2022 - 2
IEEE Circuits and Systems Magazine - Q4 2022 - 3
IEEE Circuits and Systems Magazine - Q4 2022 - 4
IEEE Circuits and Systems Magazine - Q4 2022 - 5
IEEE Circuits and Systems Magazine - Q4 2022 - 6
IEEE Circuits and Systems Magazine - Q4 2022 - 7
IEEE Circuits and Systems Magazine - Q4 2022 - 8
IEEE Circuits and Systems Magazine - Q4 2022 - 9
IEEE Circuits and Systems Magazine - Q4 2022 - 10
IEEE Circuits and Systems Magazine - Q4 2022 - 11
IEEE Circuits and Systems Magazine - Q4 2022 - 12
IEEE Circuits and Systems Magazine - Q4 2022 - 13
IEEE Circuits and Systems Magazine - Q4 2022 - 14
IEEE Circuits and Systems Magazine - Q4 2022 - 15
IEEE Circuits and Systems Magazine - Q4 2022 - 16
IEEE Circuits and Systems Magazine - Q4 2022 - 17
IEEE Circuits and Systems Magazine - Q4 2022 - 18
IEEE Circuits and Systems Magazine - Q4 2022 - 19
IEEE Circuits and Systems Magazine - Q4 2022 - 20
IEEE Circuits and Systems Magazine - Q4 2022 - 21
IEEE Circuits and Systems Magazine - Q4 2022 - 22
IEEE Circuits and Systems Magazine - Q4 2022 - 23
IEEE Circuits and Systems Magazine - Q4 2022 - 24
IEEE Circuits and Systems Magazine - Q4 2022 - 25
IEEE Circuits and Systems Magazine - Q4 2022 - 26
IEEE Circuits and Systems Magazine - Q4 2022 - 27
IEEE Circuits and Systems Magazine - Q4 2022 - 28
IEEE Circuits and Systems Magazine - Q4 2022 - 29
IEEE Circuits and Systems Magazine - Q4 2022 - 30
IEEE Circuits and Systems Magazine - Q4 2022 - 31
IEEE Circuits and Systems Magazine - Q4 2022 - 32
IEEE Circuits and Systems Magazine - Q4 2022 - 33
IEEE Circuits and Systems Magazine - Q4 2022 - 34
IEEE Circuits and Systems Magazine - Q4 2022 - 35
IEEE Circuits and Systems Magazine - Q4 2022 - 36
IEEE Circuits and Systems Magazine - Q4 2022 - 37
IEEE Circuits and Systems Magazine - Q4 2022 - 38
IEEE Circuits and Systems Magazine - Q4 2022 - 39
IEEE Circuits and Systems Magazine - Q4 2022 - 40
IEEE Circuits and Systems Magazine - Q4 2022 - 41
IEEE Circuits and Systems Magazine - Q4 2022 - 42
IEEE Circuits and Systems Magazine - Q4 2022 - 43
IEEE Circuits and Systems Magazine - Q4 2022 - 44
IEEE Circuits and Systems Magazine - Q4 2022 - 45
IEEE Circuits and Systems Magazine - Q4 2022 - 46
IEEE Circuits and Systems Magazine - Q4 2022 - 47
IEEE Circuits and Systems Magazine - Q4 2022 - 48
IEEE Circuits and Systems Magazine - Q4 2022 - 49
IEEE Circuits and Systems Magazine - Q4 2022 - 50
IEEE Circuits and Systems Magazine - Q4 2022 - 51
IEEE Circuits and Systems Magazine - Q4 2022 - 52
IEEE Circuits and Systems Magazine - Q4 2022 - 53
IEEE Circuits and Systems Magazine - Q4 2022 - 54
IEEE Circuits and Systems Magazine - Q4 2022 - 55
IEEE Circuits and Systems Magazine - Q4 2022 - 56
IEEE Circuits and Systems Magazine - Q4 2022 - 57
IEEE Circuits and Systems Magazine - Q4 2022 - 58
IEEE Circuits and Systems Magazine - Q4 2022 - 59
IEEE Circuits and Systems Magazine - Q4 2022 - 60
IEEE Circuits and Systems Magazine - Q4 2022 - 61
IEEE Circuits and Systems Magazine - Q4 2022 - 62
IEEE Circuits and Systems Magazine - Q4 2022 - 63
IEEE Circuits and Systems Magazine - Q4 2022 - 64
IEEE Circuits and Systems Magazine - Q4 2022 - 65
IEEE Circuits and Systems Magazine - Q4 2022 - 66
IEEE Circuits and Systems Magazine - Q4 2022 - 67
IEEE Circuits and Systems Magazine - Q4 2022 - 68
IEEE Circuits and Systems Magazine - Q4 2022 - 69
IEEE Circuits and Systems Magazine - Q4 2022 - 70
IEEE Circuits and Systems Magazine - Q4 2022 - 71
IEEE Circuits and Systems Magazine - Q4 2022 - 72
IEEE Circuits and Systems Magazine - Q4 2022 - 73
IEEE Circuits and Systems Magazine - Q4 2022 - 74
IEEE Circuits and Systems Magazine - Q4 2022 - 75
IEEE Circuits and Systems Magazine - Q4 2022 - 76
IEEE Circuits and Systems Magazine - Q4 2022 - 77
IEEE Circuits and Systems Magazine - Q4 2022 - 78
IEEE Circuits and Systems Magazine - Q4 2022 - 79
IEEE Circuits and Systems Magazine - Q4 2022 - 80
IEEE Circuits and Systems Magazine - Q4 2022 - Cover3
IEEE Circuits and Systems Magazine - Q4 2022 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q1
https://www.nxtbookmedia.com