IEEE Circuits and Systems Magazine - Q4 2022 - 48
[19] B. Feinberg, S. Wang, and E. Ipek, " Making memristive neural network
accelerators reliable, " in Proc. IEEE Int. Symp. High Perform. Comput.
Archit. (HPCA), Feb. 2018, pp. 52-65.
[20] L. Fick et al., " Analog in-memory subthreshold deep neural network
accelerator, " in Proc. IEEE Custom Integr. Circuits Conf. (CICC),
Apr. 2017, pp. 1-4.
[21] R. Genov and G. Cauwenberghs, " Charge-mode parallel architecture
for matrix-vector multiplication, " in Proc. 43rd IEEE Midwest Symp.
Circuits Syst., Aug. 2000, pp. 506-509.
[22] S. Ghodrati et al., " Mixed-signal charge-domain acceleration of
deep neural networks through interleaved bit-partitioned arithmetic, "
in Proc. ACM Int. Conf. Parallel Architectures Compilation Techn.,
Sep. 2020, pp. 399-411.
[23] S. K. Gonugondla et al., " Fundamental limits on the precision of
in-memory architectures, " in Proc. 39th Int. Conf. Comput.-Aided Design
(ICCAD), Nov. 2020, pp. 1-9.
[24] X. Guo et al., " Fast, energy-efficient, robust, and reproducible
mixed-signal neuromorphic classifier based on embedded NOR flash
memory technology, " in IEDM Tech. Dig., Dec. 2017, pp. 6.5.1-6.5.4.
[25] S. Han et al., " EIE: Efficient inference engine on compressed deep
neural network, " in Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput.
Archit. (ISCA), Oct. 2016, pp. 243-254.
[26] S. Han, H. Mao, and W. J. Dally, " Deep compression: Compressing
deep neural networks with pruning, trained quantization and Huffman
coding, " 2015, arXiv:1510.00149.
[27] Y. Hayakawa et al., " Highly reliable TaOx ReRAM with centralized
filament for 28-nm embedded application, " in Proc. Symp. VLSI Technol.,
Jun. 2015, pp. T14-T15.
[28] Z. He et al., " Noise injection adaption: End-to-end ReRAM crossbar
non-ideal effect adaption for neural network mapping, " in Proc. 56th
Annu. Design Autom. Conf. (DAC), Jun. 2019, pp. 57:1-57:6.
[29] A. G. Howard et al., " MobileNets: Efficient convolutional neural networks
for mobile vision applications, " 2017, arXiv:1704.04861.
[30] M. Hu et al., " Dot-product engine for neuromorphic computing:
Programming 1T1M crossbar to accelerate matrix-vector multiplication, "
in Proc. Design Autom. Conf. (DAC), Jun. 2016, pp. 1-6.
[31] B. Jacob et al., " Quantization and training of neural networks for
efficient integer-arithmetic-only inference, " in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2018, pp. 2704-2713.
[32] S. Jain and A. Raghunathan, " CxDNN: Hardware-software compensation
methods for deep neural networks on resistive crossbar systems, " ACM
Trans. Embedded Comput. Syst., vol. 18, no. 6, pp. 1-23, Nov. 2019.
[33] Y. Jeong, M. A. Zidan, and W. D. Lu, " Parasitic effect analysis in
memristor-array-based neuromorphic systems, " IEEE Trans. Nanotechnol.,
vol. 17, no. 1, pp. 184-193, Jan. 2018.
[34] V. Joshi et al., " Accurate deep neural network inference using
computational phase-change memory, " Nature Commun., vol. 11, no. 1,
pp. 1-13, Dec. 2020.
[35] N. P. Jouppi et al., " In-datacenter performance analysis of a tensor
processing unit, " in Proc. 44th Annu. Int. Symp. Comput. Archit. (ISCA),
Jun. 2017, pp. 1-12.
[36] M. Klachko, M. R. Mahmoodi, and D. Strukov, " Improving noise tolerance
of mixed-signal neural networks, " in Proc. Int. Joint Conf. Neural
Netw. (IJCNN), Jul. 2019, pp. 1-8.
[37] I. Kouznetsov et al., " 40 nm ultralow-power charge-trap embedded
NVM technology for IoT applications, " in Proc. IEEE Int. Memory Workshop
(IMW), May 2018, pp. 1-4.
[38] A. Krizhevsky et al., " Learning multiple layers of features from tiny
images, " Univ. Toronto, Toronto, ON, Canada, Tech. Rep., 2009.
[39] Y. LeCun. The MNIST Database of Handwritten Digits. Accessed:
Jul. 1, 2021. [Online]. Available: http://yann.lecun.com/exdb/mnist/
[40] Y. LeCun, Y. Bengio, and G. E. Hinton, " Deep learning, " Nature,
vol. 521, no. 7553, pp. 436-444, Dec. 2015.
[41] C. Li et al., " Analogue signal and image processing with large memristor
crossbars, " Nature Electron., vol. 1, no. 1, pp. 52-59, Jan. 2018.
[42] W. Li et al., " Timely: Pushing data movements and interfaces in PIM
accelerators towards local and in time domain, " in Proc. ACM/IEEE 47th
Annu. Int. Symp. Comput. Archit. (ISCA), May 2020, pp. 832-845.
[43] M.-Y. Lin et al., " DL-RSIM: A simulation framework to enable reliable
ReRAM-based accelerators for deep learning, " in Proc. Int. Conf.
Comput.-Aided Design, Nov. 2018, pp. 1-8.
[44] Y. Long, X. She, and S. Mukhopadhyay, " Design of reliable DNN
accelerator with un-reliable ReRAM, " in Proc. Design, Autom. Test Eur.
Conf. Exhib. (DATE), Mar. 2019, pp. 1769-1774.
48
IEEE cIrcuIts and systEms magazInE
[45] M. J. Marinella et al., " Multiscale co-design analysis of energy, latency,
area, and accuracy of a ReRAM analog neural training accelerator, " IEEE J.
Emerg. Sel. Topics Circuits Syst., vol. 8, no. 1, pp. 86-101, Mar. 2018.
[46] V. Milo et al., " Optimized programming algorithms for multilevel
RRAM in hardware neural networks, " in Proc. IEEE Int. Rel. Phys. Symp.
(IRPS), Mar. 2021, pp. 1-6.
[47] D. Miyashita, E. H. Lee, and B. Murmann, " Convolutional neural networks
using logarithmic data representation, " 2016, arXiv:1603.01025.
[48] B. Murmann. (2020). ADC Performance Survey 1997-2020. [Online].
Available: http://web.stanford.edu/murmann/adcsurvey.html
[49] A. Nag et al., " Newton: Gravitating towards the physical limits
of crossbar acceleration, " IEEE Micro, vol. 38, no. 5, pp. 41-49,
Sep./Oct. 2018.
[50] P. Narayanan et al., " Exploring the design space for crossbar arrays
built with mixed-ionic-electronic-conduction (MIEC) access devices, "
IEEE J. Electron Devices Soc., vol. 3, no. 5, pp. 423-434, Sep. 2015.
[51] V. J. Reddi et al., " MLPerf inference benchmark, " in Proc. Int. Symp.
Comput. Archit. (ISCA), Jun. 2020, pp. 446-459.
[52] A. S. Rekhi et al., " Analog/mixed-signal hardware error modeling
for deep learning inference, " in Proc. 56th Annu. Design Autom. Conf.
(DAC), Jun. 2019, pp. 1-6.
[53] J. H. Saltzer, D. P. Reed, and D. D. Clark, " End-to-end arguments in
system design, " ACM Trans. Comput. Syst., vol. 2, no. 4, pp. 277-288, 1984.
[54] C. R. Schlottmann and P. E. Hasler, " A highly dense, low power,
programmable analog vector-matrix multiplier: The FPAA implementation, "
IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 1, no. 3, pp. 403-411,
Sep. 2011.
[55] A. Sebastian et al., " Memory devices and applications for in-memory
computing, " Nature Nanotechnol., vol. 15, no. 7, pp. 529-544, Jul. 2020.
[56] A. Shafiee et al., " ISAAC: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars, " in Proc. ACM/IEEE 43rd
Annu. Int. Symp. Comput. Architecture (ISCA), Jun. 2016, pp. 14-26.
[57] K. Simonyan and A. Zisserman, " Very deep convolutional networks
for large-scale image recognition, " 2014, arXiv:1409.1556.
[58] L. Song et al., " GraphR: Accelerating graph processing using
ReRAM, " in Proc. IEEE Int. Symp. High Perform. Comput. Archit. (HPCA),
Feb. 2018, pp. 531-543.
[59] X. Sun et al., " Ultra-low precision 4-bit training of deep neural networks, "
in Proc. NeurIPS, vol. 33, 2020, pp. 2818-2826.
[60] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
" Rethinking the inception architecture for computer vision, " in Proc.
Conf. Comput. Vis. Pattern Recognit. (CVPR), 2016, pp. 2818-2826.
[61] H.-Y. Tsai et al., " Recent progress in analog memory-based accelerators
for deep learning, " J. Phys. D, Appl. Phys., vol. 51, no. 28, Jun.
2018, Art. no. 283001.
[62] T. P. Xiao et al., " Analog architectures for neural network acceleration
based on non-volatile memory, " Appl. Phys. Rev., vol. 7, no. 3, Sep.
2020, Art. no. 031301.
[63] T. P. Xiao et al., " An accurate, error-tolerant, and energy-efficient
neural network inference engine based on SONOS analog memory, " IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 69, no. 4, pp. 1480-1493, Apr. 2022.
[64] X. Xu, Y. Ding, S. X. Hu, M. Niemier, J. Cong, Y. Hu, and Y. Shi, " Scaling
for edge inference of deep neural networks, " Nature Electron., vol. 1,
no. 4, pp. 216-222, Apr. 2018.
[65] T.-J. Yang and V. Sze, " Design considerations for efficient deep
neural networks on processing-in-memory accelerators, " in IEDM Tech.
Dig., Dec. 2019, pp. 22.1.1-22.1.4.
[66] T.-H. Yang et al., " Sparse ReRAM engine: Joint exploration of activation
and weight sparsity in compressed neural networks, " in Proc. 46th
Int. Symp. Comput. Archit., Jun. 2019, pp. 236-249.
[67] P. Yao et al. " Fully hardware-implemented memristor convolutional
neural network, " Nature, vol. 577, no. 7792, pp. 641-646, 2020.
[68] S. Yu, H. Jiang, S. Huang, X. Peng, and A. Lu, " Compute-in-memory
chips for deep learning: Recent trends and prospects, " IEEE Circuits
Syst. Mag., vol. 21, no. 3, pp. 31-56, 3rd Quart., 2021.
[69] G. Yuan et al., " FORMS: Fine-grained polarized ReRAM-based insitu
computation for mixed-signal DNN accelerator, " in Proc. ACM/IEEE
48th Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2021, pp. 265-278.
[70] D. Zhang, J. Yang, D. Ye, and G. Hua, " LQ-Nets: Learned quantization
for highly accurate and compact deep neural networks, " in Proc.
Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 365-382.
[71] F. Zhang and M. Hu, " Mitigate parasitic resistance in resistive
crossbar-based convolutional neural networks, " ACM J. Emerg. Technol.
Comput. Syst., vol. 16, no. 3, pp. 1-20, Jul. 2020.
fourth quartEr 2022
http://web.stanford.edu/murmann/adcsurvey.html
http://yann.lecun.com/exdb/mnist/
IEEE Circuits and Systems Magazine - Q4 2022
Table of Contents for the Digital Edition of IEEE Circuits and Systems Magazine - Q4 2022
Contents
IEEE Circuits and Systems Magazine - Q4 2022 - Cover1
IEEE Circuits and Systems Magazine - Q4 2022 - Cover2
IEEE Circuits and Systems Magazine - Q4 2022 - Contents
IEEE Circuits and Systems Magazine - Q4 2022 - 2
IEEE Circuits and Systems Magazine - Q4 2022 - 3
IEEE Circuits and Systems Magazine - Q4 2022 - 4
IEEE Circuits and Systems Magazine - Q4 2022 - 5
IEEE Circuits and Systems Magazine - Q4 2022 - 6
IEEE Circuits and Systems Magazine - Q4 2022 - 7
IEEE Circuits and Systems Magazine - Q4 2022 - 8
IEEE Circuits and Systems Magazine - Q4 2022 - 9
IEEE Circuits and Systems Magazine - Q4 2022 - 10
IEEE Circuits and Systems Magazine - Q4 2022 - 11
IEEE Circuits and Systems Magazine - Q4 2022 - 12
IEEE Circuits and Systems Magazine - Q4 2022 - 13
IEEE Circuits and Systems Magazine - Q4 2022 - 14
IEEE Circuits and Systems Magazine - Q4 2022 - 15
IEEE Circuits and Systems Magazine - Q4 2022 - 16
IEEE Circuits and Systems Magazine - Q4 2022 - 17
IEEE Circuits and Systems Magazine - Q4 2022 - 18
IEEE Circuits and Systems Magazine - Q4 2022 - 19
IEEE Circuits and Systems Magazine - Q4 2022 - 20
IEEE Circuits and Systems Magazine - Q4 2022 - 21
IEEE Circuits and Systems Magazine - Q4 2022 - 22
IEEE Circuits and Systems Magazine - Q4 2022 - 23
IEEE Circuits and Systems Magazine - Q4 2022 - 24
IEEE Circuits and Systems Magazine - Q4 2022 - 25
IEEE Circuits and Systems Magazine - Q4 2022 - 26
IEEE Circuits and Systems Magazine - Q4 2022 - 27
IEEE Circuits and Systems Magazine - Q4 2022 - 28
IEEE Circuits and Systems Magazine - Q4 2022 - 29
IEEE Circuits and Systems Magazine - Q4 2022 - 30
IEEE Circuits and Systems Magazine - Q4 2022 - 31
IEEE Circuits and Systems Magazine - Q4 2022 - 32
IEEE Circuits and Systems Magazine - Q4 2022 - 33
IEEE Circuits and Systems Magazine - Q4 2022 - 34
IEEE Circuits and Systems Magazine - Q4 2022 - 35
IEEE Circuits and Systems Magazine - Q4 2022 - 36
IEEE Circuits and Systems Magazine - Q4 2022 - 37
IEEE Circuits and Systems Magazine - Q4 2022 - 38
IEEE Circuits and Systems Magazine - Q4 2022 - 39
IEEE Circuits and Systems Magazine - Q4 2022 - 40
IEEE Circuits and Systems Magazine - Q4 2022 - 41
IEEE Circuits and Systems Magazine - Q4 2022 - 42
IEEE Circuits and Systems Magazine - Q4 2022 - 43
IEEE Circuits and Systems Magazine - Q4 2022 - 44
IEEE Circuits and Systems Magazine - Q4 2022 - 45
IEEE Circuits and Systems Magazine - Q4 2022 - 46
IEEE Circuits and Systems Magazine - Q4 2022 - 47
IEEE Circuits and Systems Magazine - Q4 2022 - 48
IEEE Circuits and Systems Magazine - Q4 2022 - 49
IEEE Circuits and Systems Magazine - Q4 2022 - 50
IEEE Circuits and Systems Magazine - Q4 2022 - 51
IEEE Circuits and Systems Magazine - Q4 2022 - 52
IEEE Circuits and Systems Magazine - Q4 2022 - 53
IEEE Circuits and Systems Magazine - Q4 2022 - 54
IEEE Circuits and Systems Magazine - Q4 2022 - 55
IEEE Circuits and Systems Magazine - Q4 2022 - 56
IEEE Circuits and Systems Magazine - Q4 2022 - 57
IEEE Circuits and Systems Magazine - Q4 2022 - 58
IEEE Circuits and Systems Magazine - Q4 2022 - 59
IEEE Circuits and Systems Magazine - Q4 2022 - 60
IEEE Circuits and Systems Magazine - Q4 2022 - 61
IEEE Circuits and Systems Magazine - Q4 2022 - 62
IEEE Circuits and Systems Magazine - Q4 2022 - 63
IEEE Circuits and Systems Magazine - Q4 2022 - 64
IEEE Circuits and Systems Magazine - Q4 2022 - 65
IEEE Circuits and Systems Magazine - Q4 2022 - 66
IEEE Circuits and Systems Magazine - Q4 2022 - 67
IEEE Circuits and Systems Magazine - Q4 2022 - 68
IEEE Circuits and Systems Magazine - Q4 2022 - 69
IEEE Circuits and Systems Magazine - Q4 2022 - 70
IEEE Circuits and Systems Magazine - Q4 2022 - 71
IEEE Circuits and Systems Magazine - Q4 2022 - 72
IEEE Circuits and Systems Magazine - Q4 2022 - 73
IEEE Circuits and Systems Magazine - Q4 2022 - 74
IEEE Circuits and Systems Magazine - Q4 2022 - 75
IEEE Circuits and Systems Magazine - Q4 2022 - 76
IEEE Circuits and Systems Magazine - Q4 2022 - 77
IEEE Circuits and Systems Magazine - Q4 2022 - 78
IEEE Circuits and Systems Magazine - Q4 2022 - 79
IEEE Circuits and Systems Magazine - Q4 2022 - 80
IEEE Circuits and Systems Magazine - Q4 2022 - Cover3
IEEE Circuits and Systems Magazine - Q4 2022 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q1
https://www.nxtbookmedia.com