IEEE Circuits and Systems Magazine - Q2 2023 - 48

[30] S. Shah and J. Hasler, " Low power speech detector on a FPAA, " in
Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2017, pp. 1-4.
[31] R. R. Harrison and C. Charles, " A low-power low-noise CMOS amplifier
for neural recording applications, " IEEE J. Solid-State Circuits, vol.
38, no. 6, pp. 958-965, Jun. 2003.
[32] B. Razavi, Design of Analog CMOS Integrated Circuits, 1st ed. New
York, NY, USA: McGraw-Hill, 2001.
[33] S. D'Amico, M. Conta, and A. Baschirotto, " A 4.1-mW 10-MHz
fourth-order source-follower-based continuous-time filter with 79dB
DR, " IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2713-2719,
Dec. 2006.
[34] T.-T. Zhang et al., " 15-nW biopotential LPFs in 0.35-µm CMOS using
subthreshold-source-follower biquads with and without gain compensation, "
IEEE Trans. Biomed. Circuits Syst., vol. 7, no. 5, pp. 690-702,
Mar. 2013.
[35] M. Yang et al., " A 0.5 V 55 µW 64×2 channel binaural silicon cochlea
for event-driven stereo-audio sensing, " IEEE J. Solid-State Circuits, vol.
51, no. 11, pp. 2554-2569, Nov. 2016.
[36] M. De Matteis et al., " A 33 MHz 70 dB-SNR super-source-followerbased
low-pass analog filter, " IEEE J. Solid-State Circuits, vol. 50, no. 7,
pp. 1516-1524, Jul. 2015.
[37] E. Ceolini, I. Kiselev, and S.-C. Liu, " Audio classification systems using
deep neural networks and an event-driven auditory sensor, " in Proc.
IEEE Sensors, Oct. 2019, pp. 1-4.
[38] I. Kiselev, C. Gao, and S.-C. Liu, " Spiking cochlea with system-level
local automatic gain control, " IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 69, no. 5, pp. 2156-2166, May 2022.
[39] M. De Matteis and A. Baschirotto, " A biquadratic cell based on the
flipped-source-follower circuit, " IEEE Trans. Circuits Syst. II, Exp. Briefs,
vol. 64, no. 8, pp. 867-871, Aug. 2017.
[40] R. G. Carvajal et al., " The flipped voltage follower: A useful cell for
low-voltage low-power circuit design, " IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 52, no. 7, pp. 1276-1291, Jul. 2005.
[41] T. Y. Man et al., " Development of single-transistor-control LDO
based on flipped voltage follower for SoC, " IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 55, no. 5, pp. 1392-1401, Jun. 2008.
[42] J. Guo and K. N. Leung, " A 6-µW chip-area-efficient output-capacitorless
LDO in 90-nm CMOS technology, " IEEE J. Solid-State Circuits, vol.
45, no. 9, pp. 1896-1905, Sep. 2010.
[43] S. Gweon et al., " 93.8% current efficiency and 0.672 ns transient
response reconfigurable LDO for wireless sensor network systems, " in
Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2019, pp. 1-5.
[44] K. Kim et al., " A 24 µW 38.51 m rms
Ω resolution bio-impedance sensor
with dual path instrumentation amplifier, " in Proc. IEEE Eur. Solid
State Circuits Conf. (ESSCIRC), Sep. 2017, pp. 223-226.
[45] K. Kim et al., " A 0.5-V sub-10-µW 15.28-√Hz bio-impedance sensor
IC with sub-1° phase error, " IEEE J. Solid-State Circuits, vol. 55, no. 8, pp.
2161-2173, Aug. 2020.
[46] H. Ha et al., " A bio-impedance readout IC with digital-assisted baseline
cancellation for two-electrode measurement, " IEEE J. Solid-State
Circuits, vol. 54, no. 11, pp. 2969-2979, Nov. 2019.
[47] J. Xu et al., " A 665 µW silicon photomultiplier-based NIRS/EEG/EIT
monitoring ASIC for wearable functional brain imaging, " IEEE Trans.
Biomed. Circuits Syst., vol. 12, no. 6, pp. 1267-1277, Dec. 2018.
[48] J. Lee et al., " A 9.6 mW/Ch 10 MHz wide-bandwidth electrical impedance
tomography IC with accurate phase compensation for breast cancer detection, "
in Proc. IEEE Custom Integr. Circuits Conf. (CICC), Mar. 2020, pp. 1-4.
[49] N. Van Helleputte et al., " A 160 µA biopotential acquisition IC
with fully integrated IA and motion artifact suppression, " IEEE Trans.
Biomed. Circuits Syst., vol. 6, no. 6, pp. 552-561, Jun. 2012.
[50] K. Kim, S. Kim, and H.-J. Yoo, " Design of sub-10-µW sub-0.1% THD sinusoidal
current generator IC for bio-impedance sensing, " IEEE J. SolidState
Circuits, vol. 57, no. 2, pp. 586-595, Feb. 2022.
[51] K. Kim et al., " A 0.5 V, 6.2 µW, 0.059 mm2 sinusoidal current generator
IC with 0.088% THD for bio-impedance sensing, " in Proc. IEEE Symp.
VLSI Circuits, Jun. 2020, pp. 1-2.
[52] P. G. Drennan, M. Kniffin, and D. Locascio, " Implications of proximity
effects for analog design, " in Proc. IEEE Custom Integr. Circuits Conf.,
Sep. 2006, pp. 169-176.
[53] S. Oh et al., " An acoustic signal processing chip with 142-nW voice
activity detection using mixer-based sequential
frequency scanning
and neural network classification, " IEEE J. Solid-State Circuits, vol. 54,
no. 11, pp. 3005-3016, Nov. 2019.
[54] D. A. Villamizar et al., " An 800 nW switched-capacitor feature extraction
filterbank for sound classification, " IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 68, no. 4, pp. 1578-1588, Apr. 2021.
[55] H. Fuketa, " Ultralow power feature extractor using switched-capacitor-based
bandpass filter, max operator, and neural network processor
for keyword spotting, " IEEE Solid-State Circuits Lett., vol. 5, pp. 82-85, 2022.
[56] S. Zheng et al., " An ultra-low power binarized convolutional neural
network-based speech recognition processor with on-chip selflearning, "
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 12, pp.
4648-4661, Dec. 2019.
[57] W. Shan et al., " A 510-nW wake-up keyword-spotting chip using
serial-FFT-based MFCC and binarized depthwise separable CNN in
28-nm CMOS, " IEEE J. Solid-State Circuits, vol. 56, no. 1, pp. 151-164,
Jan. 2021.
[58] J.-P. Hong et al., " A 0.004 mm2 250 µW ∆Σ TDC with time-difference
accumulator and a 0.012 mm2 2.5 mW bang-bang digital PLL using PRNG
for low-power SoC applications, " in IEEE Int. Solid-State Circuits Conf.
(ISSCC) Dig. Tech. Papers, Feb. 2012, pp. 240-242.
[59] S. Kondo et al., " A 240×192 pixel 10 fps 70klux 225 m-range automotive
LiDAR SoC using a 40 ch 0.0036 mm2 voltage/time dual-dataconverter-based
AFE, " in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig.
Tech. Papers, Feb. 2020, pp. 94-96.
[60] J. Anumula et al., " An event-driven probabilistic model of sound
source localization using cochlea spikes, " in Proc. IEEE Int. Symp. Circuits
Syst. (ISCAS), May 2018, pp. 1-5.
[61] Y. Xu et al., " A machine hearing system for binaural sound localization
based on instantaneous correlation, " in Proc. IEEE Int. Symp. Circuits
Syst. (ISCAS), May 2018, pp. 1-5.
[62] X. Li et al., " Lip reading deep network exploiting multi-modal spiking
visual and auditory sensors, " in Proc. IEEE Int. Symp. Circuits Syst.
(ISCAS), May 2019, pp. 1-5.
[63] I. Kiselev, D. Neil, and S.-C. Liu, " Event-driven deep neural network
hardware system for sensor fusion, " in Proc. IEEE Int. Symp. Circuits Syst.
(ISCAS), May 2016, pp. 2495-2498.
[64] E. Ceolini et al., " Event-driven pipeline for low-latency low-compute
keyword spotting and speaker verification system, " in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2019, pp.
7953-7957.
[65] W. Deng et al., " A fully synthesizable all-digital PLL with interpolative
phase coupled oscillator, current-output DAC, and fine-resolution
digital varactor using gated edge injection technique, " IEEE J. SolidState
Circuits, vol. 50, no. 1, pp. 68-80, Jan. 2015.
[66] S. Li, B. Xu, D. Z. Pan, and N. Sun, " A 60-fJ/step 11-ENOB VCO-based
CTDSM synthesized from digital standard cell library, " in Proc. IEEE
Custom Integr. Circuits Conf. (CICC), Apr. 2019, pp. 1-4.
[67] K. Kim et al., " A 0.5 V 9.26 µW 15.28 mΩ /√Hz bio-impedance sensor
IC with 0.55° overall phase error, " in IEEE Int. Solid-State Circuits Conf.
(ISSCC) Dig. Tech. Papers, Feb. 2019, pp. 364-366.
[68] S. Pavan et al., " A power optimized continuous-time ∆Σ ADC for audio
applications, " IEEE J. Solid-State Circuits, vol. 43, no. 2, pp. 351-360,
Feb. 2008.
[69] L. Shen et al., " A two-step ADC with a continuous-time SAR-based
first stage, " IEEE J. Solid-State Circuits, vol. 54, no. 12, pp. 3375-3385,
Dec. 2019.
[70] N. Butzen and M. S. J. Steyaert, " Scalable parasitic charge redistribution:
Design of high-efficiency fully integrated switched-capacitor
DC-DC converters, " IEEE J. Solid-State Circuits, vol. 51, no. 12, pp. 2843-
2853, Dec. 2016.
[71] B. Murmann. ADC Performance Survey 1997-2022. Accessed: Apr. 26,
2023. [Online]. Available: https://github.com/bmurmann/ADC-survey
[72] H. Chandrakumar and D. Markovic´, " A 15.2-ENOB 5-kHz BW
4.5-µW chopped CT ∆Σ-ADC for artifact-tolerant neural recording
front ends, " IEEE J. Solid-State Circuits, vol. 53, no. 12, pp. 3470-3483,
Dec. 2018.
[73] A. R. Nair, S. Chakrabartty, and C. S. Thakur, " In-filter computing
for designing ultralight acoustic pattern recognizers, " IEEE Internet
Things J., vol. 9, no. 8, pp. 6095-6106, Apr. 2022.
[74] Y. Xu et al., " A FPGA implementation of the CAR-FAC cochlear model, "
Frontiers Neurosci., vol. 12, p. 198, Apr. 2018.
48
IEEE CIRCUITS AND SYSTEMS MAGAZINE
SECOND QUARTER 2023
https://github.com/bmurmann/ADC-survey

IEEE Circuits and Systems Magazine - Q2 2023

Table of Contents for the Digital Edition of IEEE Circuits and Systems Magazine - Q2 2023

Contents
IEEE Circuits and Systems Magazine - Q2 2023 - Cover1
IEEE Circuits and Systems Magazine - Q2 2023 - Cover2
IEEE Circuits and Systems Magazine - Q2 2023 - Contents
IEEE Circuits and Systems Magazine - Q2 2023 - 2
IEEE Circuits and Systems Magazine - Q2 2023 - 3
IEEE Circuits and Systems Magazine - Q2 2023 - 4
IEEE Circuits and Systems Magazine - Q2 2023 - 5
IEEE Circuits and Systems Magazine - Q2 2023 - 6
IEEE Circuits and Systems Magazine - Q2 2023 - 7
IEEE Circuits and Systems Magazine - Q2 2023 - 8
IEEE Circuits and Systems Magazine - Q2 2023 - 9
IEEE Circuits and Systems Magazine - Q2 2023 - 10
IEEE Circuits and Systems Magazine - Q2 2023 - 11
IEEE Circuits and Systems Magazine - Q2 2023 - 12
IEEE Circuits and Systems Magazine - Q2 2023 - 13
IEEE Circuits and Systems Magazine - Q2 2023 - 14
IEEE Circuits and Systems Magazine - Q2 2023 - 15
IEEE Circuits and Systems Magazine - Q2 2023 - 16
IEEE Circuits and Systems Magazine - Q2 2023 - 17
IEEE Circuits and Systems Magazine - Q2 2023 - 18
IEEE Circuits and Systems Magazine - Q2 2023 - 19
IEEE Circuits and Systems Magazine - Q2 2023 - 20
IEEE Circuits and Systems Magazine - Q2 2023 - 21
IEEE Circuits and Systems Magazine - Q2 2023 - 22
IEEE Circuits and Systems Magazine - Q2 2023 - 23
IEEE Circuits and Systems Magazine - Q2 2023 - 24
IEEE Circuits and Systems Magazine - Q2 2023 - 25
IEEE Circuits and Systems Magazine - Q2 2023 - 26
IEEE Circuits and Systems Magazine - Q2 2023 - 27
IEEE Circuits and Systems Magazine - Q2 2023 - 28
IEEE Circuits and Systems Magazine - Q2 2023 - 29
IEEE Circuits and Systems Magazine - Q2 2023 - 30
IEEE Circuits and Systems Magazine - Q2 2023 - 31
IEEE Circuits and Systems Magazine - Q2 2023 - 32
IEEE Circuits and Systems Magazine - Q2 2023 - 33
IEEE Circuits and Systems Magazine - Q2 2023 - 34
IEEE Circuits and Systems Magazine - Q2 2023 - 35
IEEE Circuits and Systems Magazine - Q2 2023 - 36
IEEE Circuits and Systems Magazine - Q2 2023 - 37
IEEE Circuits and Systems Magazine - Q2 2023 - 38
IEEE Circuits and Systems Magazine - Q2 2023 - 39
IEEE Circuits and Systems Magazine - Q2 2023 - 40
IEEE Circuits and Systems Magazine - Q2 2023 - 41
IEEE Circuits and Systems Magazine - Q2 2023 - 42
IEEE Circuits and Systems Magazine - Q2 2023 - 43
IEEE Circuits and Systems Magazine - Q2 2023 - 44
IEEE Circuits and Systems Magazine - Q2 2023 - 45
IEEE Circuits and Systems Magazine - Q2 2023 - 46
IEEE Circuits and Systems Magazine - Q2 2023 - 47
IEEE Circuits and Systems Magazine - Q2 2023 - 48
IEEE Circuits and Systems Magazine - Q2 2023 - 49
IEEE Circuits and Systems Magazine - Q2 2023 - 50
IEEE Circuits and Systems Magazine - Q2 2023 - 51
IEEE Circuits and Systems Magazine - Q2 2023 - 52
IEEE Circuits and Systems Magazine - Q2 2023 - 53
IEEE Circuits and Systems Magazine - Q2 2023 - 54
IEEE Circuits and Systems Magazine - Q2 2023 - 55
IEEE Circuits and Systems Magazine - Q2 2023 - 56
IEEE Circuits and Systems Magazine - Q2 2023 - 57
IEEE Circuits and Systems Magazine - Q2 2023 - 58
IEEE Circuits and Systems Magazine - Q2 2023 - 59
IEEE Circuits and Systems Magazine - Q2 2023 - 60
IEEE Circuits and Systems Magazine - Q2 2023 - 61
IEEE Circuits and Systems Magazine - Q2 2023 - 62
IEEE Circuits and Systems Magazine - Q2 2023 - 63
IEEE Circuits and Systems Magazine - Q2 2023 - 64
IEEE Circuits and Systems Magazine - Q2 2023 - 65
IEEE Circuits and Systems Magazine - Q2 2023 - 66
IEEE Circuits and Systems Magazine - Q2 2023 - 67
IEEE Circuits and Systems Magazine - Q2 2023 - 68
IEEE Circuits and Systems Magazine - Q2 2023 - 69
IEEE Circuits and Systems Magazine - Q2 2023 - 70
IEEE Circuits and Systems Magazine - Q2 2023 - 71
IEEE Circuits and Systems Magazine - Q2 2023 - 72
IEEE Circuits and Systems Magazine - Q2 2023 - Cover3
IEEE Circuits and Systems Magazine - Q2 2023 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q1
https://www.nxtbookmedia.com