IEEE Circuits and Systems Magazine - Q3 2023 - 67

Shanthi Pavan (Fellow, IEEE) received
the B.Tech. degree in electronics and
communication engineering from the
Indian Institute of Technology, Madras,
India, in 1995, and the M.S. and Sc.D.
degrees from Columbia University,
New York, NY, USA, in 1997 and 1999,
respectively. From 1997 to 2000, he was with Texas Instruments
in Warren, Warren, NJ, USA, where he worked
on high speed analog filters and data converters. From
2000 to 2002, he worked on microwave ICs for data communication
with Bigbear Networks in Sunnyvale, Sunnyvale,
CA, USA. Since 2002, he has been with the Indian
Institute of Technology-Madras, where he is now the NT
Alexander Institute Chair Professor of electrical engineering.
His research interests are in the areas of high
speed analog circuit design and signal processing. He is
the recipient of several awards, including the IEEE Circuits
and Systems Society Darlington Best Paper Award
(2009), the Shanti Swarup Bhatnagar Award (2012), and
the Swarnajayanthi Fellowship (2009) (from the Government
of India). He is the author of book titled Understanding
Delta-Sigma Data Converters (second edition), with
Richard Schreier and Gabor Temes, which received the
Wiley-IEEE Press Professional Book Award for the year
2020. He has served as the Editor-in-Chief of the IEEE
TransacTions on circuiTs and sysTems: ParT i-regular PaPers,
and on the editorial boards of both parts of the ieee
TransacTions on circuiTs and sysTems. He has served on the
Technical Program Committee of the International Solid
State Circuits Conference, and been a Distinguished
Lecturer of the Solid-State Circuits and Circuits-and-Systems
Societies. He currently serves as the Vice President
of Publications for the IEEE Solid-State Circuits Society,
and on the editorial boards of the IEEE Journal of SolidState
Circuits and the IEEE Solid-State Circuits Letters. He
is a Fellow of the Indian National Academy of Engineering,
the Indian National Science Academy, and the IEEE.
References
[1] A. Bandyopadhyay et al., " A 97.3 dB SNR, 600 kHz BW, 31 mW multibit
continuous time ΔΣ ADC, " in Proc. Symp. VLSI Circuits, 2014, pp. 1-2.
[2] DC to 204 kHz, Dynamic Signal Analysis, Precision 24-Bit ADC With
Power Scaling, Analog Devices, Wilmington, MA, USA, 2019.
[3] W. Shaikh and S. Nittala, " AC and DC data acquisition signal chains
made easy, " Analog Devices, vol. 54, no. 3, Aug. 2020. [Online]. Available:
https://www.analog.com/media/en/analog-dialogue/volume-54/
number-2/ac-and-dc-data-acquisition-signal-chains-made-easy.pdf
[4]
B. Murmann. (2019). ADC Performance Survey 1997-2019. [Online].
Available: http://www.stanford.edu/murmann/adcsurvey.html
[5] B. Gonen et al., " A low power continuous-time zoom ADC for audio
applications, " in Proc. Symp. VLSI Circuits, Jun. 2019, pp. 224-225.
[6] S. Billa et al., " Analysis and design of continuous-time delta-sigma
modulators incorporating chopping, " IEEE J. Solid-State Circuits, vol. 52,
no. 9, pp. 2350-2361, Sep. 2017.
[7] T. Wang, Y. Lin, and C. Liu et al., " A 0.022 mm2 98.5 dB SNDR hybrid
audio ΔΣ modulator with digital ELD compensation in 28 nm CMOS, "
IEEE J. Solid-State Circuits, vol. 50, no. 11, pp. 2655-2664, Nov. 2015.
[8] M. Jang et al., " A 134 mW 24 kHz-BW103.5 dB-DR CT ΔΣ modulator
with chopped negative-R and tri-level FIR DAC, " in IEEE Int. Solid-State
Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2020, pp. 1-3.
[9] S.-H. Wu et al., " A current-sensing front-end realized by a continuoustime
incremental ADC with 12b SAR quantizer and reset-then-open resistive
DAC achieving 140 dB DR and 8 ppm INL at 4kS/s, " in IEEE Int. SolidState
Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2020, pp. 154-156.
[10] C. Lo et al., " A 116 mW 104.4 dB-DR100.6 dB-SNDRCT ΔΣ audio ADC
using tri-level current-steering DAC with gate-leakage compensated offtransistor-based
bias noise filter, " in IEEE Int. Solid-State Circuits Conf.
(ISSCC) Dig. Tech. Papers, vol. 64, Feb. 2021, pp. 164-166.
[11] S. Mondal et al., " A 139 mW 104.8 dB-DR 24 kHz-BW CT ΔΣM with
chopped AC-coupled OTA-stacking and FIR DACs, " in IEEE Int. Solid-State
Circuits Conf. (ISSCC) Dig. Tech. Papers, vol. 64, Feb. 2021, pp. 166-168.
[12] R. Theertham et al., " Design techniques for high-resolution continuous-time
delta-sigma converters with low in-band noise spectral density, "
IEEE J. Solid-State Circuits, vol. 55, no. 9, pp. 2429-2442, Sep. 2020.
[13] R. Theertham et al., " Design of high-resolution continuous-time
delta-sigma data converters with dual return-to-open DACs, " IEEE J.
Solid-State Circuits, vol. 57, no. 11, pp. 3418-3428, Nov. 2022.
[14] G. Mitteregger et al., " A 20-mW 640-MHz CMOS continuous-time ΔΣ
ADC with 20 MHz signal bandwidth, 80-dB dynamic range and 12-bit
ENOB, " IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2641-2649, Dec. 2006.
[15] S. Pavan et al., Understanding Delta-Sigma Data Converters.
Hoboken, NJ, USA: Wiley, 2017.
[16] S. Pavan, " Continuous-time delta-sigma modulator design using the
method of moments, " IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61, no.
6, pp. 1629-1637, Jun. 2014.
[17] R. T. Baird and T. S. Fiez, " Linearity enhancement of multibit ΔΣ
A/D and D/A converters using data weighted averaging, " IEEE Trans. Circuits
Syst. II, Analog Digit. Signal Process., vol. 42, no. 12, pp. 753-762,
Dec. 1995.
[18] K. Chen and T. Kuo, " An improved technique for reducing baseband
tones in sigma-delta modulators employing data weighted averaging algorithm
without adding dither, " IEEE Trans. Circuits Syst. II, Analog Digit.
Signal Process., vol. 46, no. 1, pp. 63-68, Jan. 1999.
[19] W. Shi et al., " A 0.37 mm2 250 kHz-BW 95db-SNDR CTDSM with lowcost
2nd-order vector-quantizer DEM, " in Proc. IEEE Custom Integr. Circuits
Conf. (CICC), Apr. 2022, pp. 1-2.
[20], B. Gonen et al., " A dynamic zoom ADC with 109-dB DR for audio applications, "
IEEE J. Solid-State Circuits, vol. 52, no. 6, 2022, pp. 1542-1550,
June 2017.
[21] C. Lee et al., " A 1.2 V 68 mW 98.2 dB-DR audio continuous-time
delta-sigma modulator, " in Proc. IEEE Symp. VLSI Circuits, Jun. 2018,
pp. 199-200.
[22] R. Theertham and S. Pavan, " Unified analysis, modeling, and simulation
of chopping artifacts in continuous-time delta-sigma modulators, "
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 8, pp. 2831-2842,
Aug. 2019
[23] A. Shabra et al., " Design techniques for high linearity and dynamic
range digital to analog converters, " in Proc. IEEE Custom Integr. Circuits
Conf. (CICC), Apr. 2022, pp. 1-8.
[24] E. van der Zwan, " A 2.3 mW CMOS ΔΣ modulator for audio applications, "
in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers,
Feb. 1997, pp. 220-221.
[25] K.-P. Pun et al., " A 0.5-V 74-dB SNDR 25-kHz continuous-time deltasigma
modulator with a return-to-open DAC, " IEEE J. Solid-State Circuits,
vol. 42, no. 3, pp. 496-507, Mar. 2007.
[26] S. Loeda et al., " A 10/20/30/40 MHz feedforward FIR DAC continuous-time
ΔΣ ADC Withwith robust blocker performance for radio
receivers, " IEEE J. Solid-State Circuits, vol. 51, no. 4, pp. 860-870,
Apr. 2016.
[27] S. Pavan, " Analysis of chopped integrators, and its application to
continuous-time delta-sigma modulator design, " IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 64, no. 8, pp. 1953-1965, Aug. 2017.
[28] S. Pavan, " Systematic design centering of continuous time oversampling
converters, " IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57,
no. 3, pp. 158-162, Mar. 2010.
THIRD QUARTER 2023
IEEE CIRCUITS AND SYSTEMS MAGAZINE
67
https://www.analog.com/media/en/analog-dialogue/volume-54/number-2/ac-and-dc-data-acquisition-signal-chains-made-easy.pdf https://www.analog.com/media/en/analog-dialogue/volume-54/number-2/ac-and-dc-data-acquisition-signal-chains-made-easy.pdf http://www.stanford.edu/murmann/adcsurvey.html

IEEE Circuits and Systems Magazine - Q3 2023

Table of Contents for the Digital Edition of IEEE Circuits and Systems Magazine - Q3 2023

Contents
IEEE Circuits and Systems Magazine - Q3 2023 - Cover1
IEEE Circuits and Systems Magazine - Q3 2023 - Cover2
IEEE Circuits and Systems Magazine - Q3 2023 - Contents
IEEE Circuits and Systems Magazine - Q3 2023 - 2
IEEE Circuits and Systems Magazine - Q3 2023 - 3
IEEE Circuits and Systems Magazine - Q3 2023 - 4
IEEE Circuits and Systems Magazine - Q3 2023 - 5
IEEE Circuits and Systems Magazine - Q3 2023 - 6
IEEE Circuits and Systems Magazine - Q3 2023 - 7
IEEE Circuits and Systems Magazine - Q3 2023 - 8
IEEE Circuits and Systems Magazine - Q3 2023 - 9
IEEE Circuits and Systems Magazine - Q3 2023 - 10
IEEE Circuits and Systems Magazine - Q3 2023 - 11
IEEE Circuits and Systems Magazine - Q3 2023 - 12
IEEE Circuits and Systems Magazine - Q3 2023 - 13
IEEE Circuits and Systems Magazine - Q3 2023 - 14
IEEE Circuits and Systems Magazine - Q3 2023 - 15
IEEE Circuits and Systems Magazine - Q3 2023 - 16
IEEE Circuits and Systems Magazine - Q3 2023 - 17
IEEE Circuits and Systems Magazine - Q3 2023 - 18
IEEE Circuits and Systems Magazine - Q3 2023 - 19
IEEE Circuits and Systems Magazine - Q3 2023 - 20
IEEE Circuits and Systems Magazine - Q3 2023 - 21
IEEE Circuits and Systems Magazine - Q3 2023 - 22
IEEE Circuits and Systems Magazine - Q3 2023 - 23
IEEE Circuits and Systems Magazine - Q3 2023 - 24
IEEE Circuits and Systems Magazine - Q3 2023 - 25
IEEE Circuits and Systems Magazine - Q3 2023 - 26
IEEE Circuits and Systems Magazine - Q3 2023 - 27
IEEE Circuits and Systems Magazine - Q3 2023 - 28
IEEE Circuits and Systems Magazine - Q3 2023 - 29
IEEE Circuits and Systems Magazine - Q3 2023 - 30
IEEE Circuits and Systems Magazine - Q3 2023 - 31
IEEE Circuits and Systems Magazine - Q3 2023 - 32
IEEE Circuits and Systems Magazine - Q3 2023 - 33
IEEE Circuits and Systems Magazine - Q3 2023 - 34
IEEE Circuits and Systems Magazine - Q3 2023 - 35
IEEE Circuits and Systems Magazine - Q3 2023 - 36
IEEE Circuits and Systems Magazine - Q3 2023 - 37
IEEE Circuits and Systems Magazine - Q3 2023 - 38
IEEE Circuits and Systems Magazine - Q3 2023 - 39
IEEE Circuits and Systems Magazine - Q3 2023 - 40
IEEE Circuits and Systems Magazine - Q3 2023 - 41
IEEE Circuits and Systems Magazine - Q3 2023 - 42
IEEE Circuits and Systems Magazine - Q3 2023 - 43
IEEE Circuits and Systems Magazine - Q3 2023 - 44
IEEE Circuits and Systems Magazine - Q3 2023 - 45
IEEE Circuits and Systems Magazine - Q3 2023 - 46
IEEE Circuits and Systems Magazine - Q3 2023 - 47
IEEE Circuits and Systems Magazine - Q3 2023 - 48
IEEE Circuits and Systems Magazine - Q3 2023 - 49
IEEE Circuits and Systems Magazine - Q3 2023 - 50
IEEE Circuits and Systems Magazine - Q3 2023 - 51
IEEE Circuits and Systems Magazine - Q3 2023 - 52
IEEE Circuits and Systems Magazine - Q3 2023 - 53
IEEE Circuits and Systems Magazine - Q3 2023 - 54
IEEE Circuits and Systems Magazine - Q3 2023 - 55
IEEE Circuits and Systems Magazine - Q3 2023 - 56
IEEE Circuits and Systems Magazine - Q3 2023 - 57
IEEE Circuits and Systems Magazine - Q3 2023 - 58
IEEE Circuits and Systems Magazine - Q3 2023 - 59
IEEE Circuits and Systems Magazine - Q3 2023 - 60
IEEE Circuits and Systems Magazine - Q3 2023 - 61
IEEE Circuits and Systems Magazine - Q3 2023 - 62
IEEE Circuits and Systems Magazine - Q3 2023 - 63
IEEE Circuits and Systems Magazine - Q3 2023 - 64
IEEE Circuits and Systems Magazine - Q3 2023 - 65
IEEE Circuits and Systems Magazine - Q3 2023 - 66
IEEE Circuits and Systems Magazine - Q3 2023 - 67
IEEE Circuits and Systems Magazine - Q3 2023 - 68
IEEE Circuits and Systems Magazine - Q3 2023 - 69
IEEE Circuits and Systems Magazine - Q3 2023 - 70
IEEE Circuits and Systems Magazine - Q3 2023 - 71
IEEE Circuits and Systems Magazine - Q3 2023 - 72
IEEE Circuits and Systems Magazine - Q3 2023 - 73
IEEE Circuits and Systems Magazine - Q3 2023 - 74
IEEE Circuits and Systems Magazine - Q3 2023 - 75
IEEE Circuits and Systems Magazine - Q3 2023 - 76
IEEE Circuits and Systems Magazine - Q3 2023 - 77
IEEE Circuits and Systems Magazine - Q3 2023 - 78
IEEE Circuits and Systems Magazine - Q3 2023 - 79
IEEE Circuits and Systems Magazine - Q3 2023 - 80
IEEE Circuits and Systems Magazine - Q3 2023 - 81
IEEE Circuits and Systems Magazine - Q3 2023 - 82
IEEE Circuits and Systems Magazine - Q3 2023 - 83
IEEE Circuits and Systems Magazine - Q3 2023 - 84
IEEE Circuits and Systems Magazine - Q3 2023 - 85
IEEE Circuits and Systems Magazine - Q3 2023 - 86
IEEE Circuits and Systems Magazine - Q3 2023 - 87
IEEE Circuits and Systems Magazine - Q3 2023 - 88
IEEE Circuits and Systems Magazine - Q3 2023 - Cover3
IEEE Circuits and Systems Magazine - Q3 2023 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2023Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2022Q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021Q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2021q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2020q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2019q1
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q4
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q3
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q2
https://www.nxtbook.com/nxtbooks/ieee/circuitsandsystems_2018q1
https://www.nxtbookmedia.com